Stock Ticker

Sensitive and modular amplicon sequencing of Plasmodium falciparum diversity and resistance for research and public health

  • Dalmat, R., Naughton, B., Kwan-Gett, T. S., Slyker, J. & Stuckey, E. M. Use cases for genetic epidemiology in malaria elimination. Malar. J. 18, 163 (2019).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hamilton, W. L. et al. Evolution and expansion of multidrug-resistant malaria in Southeast Asia: a genomic epidemiology study. Lancet Infect. Dis. 19, 943–951 (2019).

    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Feleke, S. M. et al. Plasmodium falciparum is evolving to escape malaria rapid diagnostic tests in Ethiopia. Nat. Microbiol. 6, 1289–1299 (2021).

  • Ndwiga, L. et al. A review of the frequencies of Plasmodium falciparum Kelch 13 Artemisinin resistance mutations in Africa. Int. J. Parasitol. Drugs Drug Resist. 16, 155–161 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rosenthal, P. J. et al. Cooperation in countering Artemisinin resistance in Africa: learning from COVID-19. Am. J. Trop. Med. Hyg. 106, 1568–1570 (2022).

    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Neafsey Daniel, E. et al. Genetic diversity and protective efficacy of the RTS,S/AS01 malaria vaccine. N Engl. J. Med. 373, 2025–2037 (2015).

    MATH 

    Google Scholar
     

  • Wesolowski, A. et al. Mapping malaria by combining parasite genomic and epidemiologic data. BMC Med. 16, 190 (2018).

    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Tessema, S. et al. Using parasite genetic and human mobility data to infer local and cross-border malaria connectivity in Southern Africa. eLife 8, e43510 (2019).

  • Tessema, S. K. et al. Applying next-generation sequencing to track falciparum malaria in sub-Saharan Africa. Malar. J. 18, 268 (2019).

    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Watson, O. J. et al. Evaluating the performance of malaria genetics for inferring changes in transmission intensity using transmission modeling. Mol. Biol. Evol. 38, 274–289 (2021).

    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Daniels, R. F. et al. Genetic evidence for imported malaria and local transmission in Richard toll, Senegal. Malar. J. 19, 276 (2020).

    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Mensah, B. A., Akyea-Bobi, N. E. & Ghansah, A. Genomic approaches for monitoring transmission dynamics of malaria: A case for malaria molecular surveillance in Sub–Saharan Africa. Front. Epidemiol. 2, 939291 (2022).

  • Schaffner, S. F. et al. Malaria surveillance reveals parasite relatedness, signatures of selection, and correlates of transmission across Senegal. Nat. Commun. 14, 7268 (2023).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Fola, A. A. et al. Temporal and Spatial analysis of Plasmodium falciparum genomics reveals patterns of parasite connectivity in a low-transmission district in Southern Province, Zambia. Malar. J. 22, 208 (2023).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yeka, A. et al. Comparative efficacy of Artemether-Lumefantrine and Dihydroartemisinin-Piperaquine for the treatment of uncomplicated malaria in Ugandan children. J. Infect. Dis. 219, 1112–1120 (2019).

    CAS 
    PubMed 

    Google Scholar
     

  • Snounou, G. & Beck, H. P. The use of PCR genotyping in the assessment of recrudescence or reinfection after antimalarial drug treatment. Parasitol. Today. 14, 462–467 (1998).

    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Uwimana, A. et al. Association of Plasmodium falciparum kelch13 R561H genotypes with delayed parasite clearance in Rwanda: an open-label, single-arm, multicentre, therapeutic efficacy study. Lancet Infect. Dis. 21, 1120–1128 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Schnoz, A. et al. Genotyping methods to distinguish Plasmodium falciparum recrudescence from new infection for the assessment of antimalarial drug efficacy: an observational, single-centre, comparison study. Lancet Microbe 5, 100914 (2024).

  • Lover, A. A., Baird, J. K., Gosling, R. & Price, R. N. Malaria elimination: time to target all species. Am. J. Trop. Med. Hyg. 99, 17–23 (2018).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mwesigwa, A. et al. Plasmodium falciparum genetic diversity and multiplicity of infection based on msp-1, msp-2, glurp and microsatellite genetic markers in sub-Saharan Africa: a systematic review and meta-analysis. Malar. J. 23, 97 (2024).

  • Briggs, J. et al. Within-household clustering of genetically related Plasmodium falciparum infections in a moderate transmission area of Uganda. Malar. J. 20, 68 (2021).

    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Brokhattingen, N. et al. Genomic malaria surveillance of antenatal care users detects reduced transmission following elimination interventions in Mozambique. Nat. Commun. 15, 2402 (2024).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Viriyakosol, S. et al. Genotyping of Plasmodium falciparum isolates by the polymerase chain reaction and potential uses in epidemiological studies. Bull. World Health Organ. 73, 85–95 (1995).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Anderson, T. J. C., Su, X. Z., Bockarie, M., Lagog, M. & Day, K. P. Twelve microsatellite markers for characterization of Plasmodium falciparum from finger-prick blood samples. Parasitology 119, 113–125 (1999).

    CAS 
    PubMed 

    Google Scholar
     

  • Anderson, T. J. C. et al. Microsatellite markers reveal a spectrum of population structures in the malaria parasite Plasmodium falciparum. Mol. Biol. Evol. 17, 1467–1482 (2000).

    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Jacob, C. G. et al. Genetic surveillance in the Greater Mekong subregion and South Asia to support malaria control and elimination. eLife 10, e62997 (2021).

  • Kattenberg, J. H. et al. Molecular surveillance of malaria using the PF ampliseq custom assay for Plasmodium falciparum parasites from dried blood spot DNA isolates from Peru. Bio-Protoc 13, e4621 (2023).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Taylor, A. R., Jacob, P. E., Neafsey, D. E. & Buckee, C. O. Estimating Relatedness between Malar. Parasites Genet. 212, 1337–1351 (2019).


    Google Scholar
     

  • Tessema, S. K. et al. Sensitive, highly multiplexed sequencing of microhaplotypes from the Plasmodium falciparum heterozygome. J. Infect. Dis. 225, 1227–1237 (2022).

    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • LaVerriere, E. et al. Design and implementation of multiplexed amplicon sequencing panels to serve genomic epidemiology of infectious disease: A malaria case study. Mol. Ecol. Resour. 22, 2285–2303 (2022).

    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • de Cesare, M. et al. Flexible and cost-effective genomic surveillance of P. falciparum malaria with targeted nanopore sequencing. Nat. Commun. 15, 1413 (2024).

    ADS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Holzschuh, A. et al. Using a mobile nanopore sequencing lab for end-to-end genomic surveillance of Plasmodium falciparum: A feasibility study. PLOS Glob Public. Health. 4, e0002743 (2024).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Girgis, S. T. et al. Drug resistance and vaccine target surveillance of Plasmodium falciparum using nanopore sequencing in Ghana. Nat. Microbiol. 8, 2365–2377 (2023).

    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Melnikov, A. et al. Hybrid selection for sequencing pathogen genomes from clinical samples. Genome Biol. 12, R73 (2011).

    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Villena, F. E., Lizewski, S. E., Joya, C. A. & Valdivia, H. O. Population genomics and evidence of clonal replacement of Plasmodium falciparum in the Peruvian Amazon. Sci. Rep. 11, 21212 (2021).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mathieu, L. C. et al. Local emergence in Amazonia of Plasmodium falciparum k13 C580Y mutants associated with in vitro Artemisinin resistance. eLife 9, e51015 (2020).

  • Cerqueira, G. C. et al. Longitudinal genomic surveillance of Plasmodium falciparum malaria parasites reveals complex genomic architecture of emerging Artemisinin resistance. Genome Biol. 18, 78 (2017).

  • Parobek, C. M. et al. Partner-Drug resistance and population substructuring of Artemisinin-Resistant Plasmodium falciparum in Cambodia. Genome Biol. Evol. 9, 1673–1686 (2017).

    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Pelleau, S. et al. Adaptive evolution of malaria parasites in French Guiana: reversal of chloroquine resistance by acquisition of a mutation in Pfcrt. Proc. Natl. Acad. Sci. 112, 11672–11677 (2015).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dara, A. et al. New var reconstruction algorithm exposes high var sequence diversity in a single geographic location in Mali. Genome Med. 9, 30 (2017).

    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Tvedte, E. S. et al. Evaluation of a high-throughput, cost-effective illumina library Preparation kit. Sci. Rep. 11, 15925 (2021).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ahouidi, A. & Ali, M. An open dataset of Plasmodium falciparum genome variation in 7,000 worldwide samples. Wellcome Open. Res. 6, 42 (2021).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hathaway, N. A suite of computational tools to interrogate sequence data with local haplotype analysis within complex ​Plasmodium​ infections and other microbial mixtures. (2018). https://doi.org/10.13028/M2039K

  • Hathaway, N. J. et al. Interchromosomal segmental duplication drives translocation and loss of P. falciparum histidine-rich protein 3. eLife 13, (2024).

  • MalariaGEN et al. Pf7: an open dataset of Plasmodium falciparum genome variation in 20,000 worldwide samples. Wellcome Open. Res. 8, 22 (2023).

    PubMed Central 

    Google Scholar
     

  • Gerlovina, I., Gerlovin, B., Rodríguez-Barraquer, I. & Greenhouse, B. Dcifer: an IBD-based method to calculate genetic distance between polyclonal infections. Genetics 222, iyac126 (2022).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Murphy, M. & Greenhouse, B. MOIRE: a software package for the Estimation of allele frequencies and effective multiplicity of infection from polyallelic data. Bioinformatics 40, btae619 (2024).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Esayas, E. et al. Impact of nighttime human behavior on exposure to malaria vectors and effectiveness of using long-lasting insecticidal Nets in the Ethiopian lowlands and highlands. Parasit. Vectors. 17, 520 (2024).

    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Asua, V. et al. Plasmodium Species Infecting Children Presenting with Malaria in Uganda. (2017). https://doi.org/10.4269/ajtmh.17-0345

  • Rek, J. et al. Asymptomatic School-Aged children are important drivers of malaria transmission in a high endemicity setting in Uganda. J. Infect. Dis. 226, 708–713 (2022).

    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Andolina, C. et al. Sources of persistent malaria transmission in a setting with effective malaria control in Eastern Uganda: a longitudinal, observational cohort study. Lancet Infect. Dis. 21, 1568–1578 (2021).

    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Teyssier, N. B. et al. Optimization of whole-genome sequencing of Plasmodium falciparum from low-density dried blood spot samples. Malar. J. 20, 116 (2021).

    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Hugo, L. E. et al. Rapid low-resource detection of Plasmodium falciparum in infected Anopheles mosquitoes. Front. Trop. Dis. 5, 1287025 (2024).

  • Hofmann, N. et al. Ultra-Sensitive detection of plasmodium falciparum by amplification of Multi-Copy subtelomeric targets. PLOS Med. 12, e1001788 (2015).

  • Mayor, A. et al. Sub-microscopic infections and long-term recrudescence of Plasmodium falciparum in Mozambican pregnant women. Malar. J. 8, 9 (2009).

    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Molla, E. et al. Seasonal dynamics of symptomatic and asymptomatic Plasmodium falciparum and Plasmodium Vivax infections in coendemic Low-Transmission settings, South Ethiopia. (2024). https://doi.org/10.4269/ajtmh.24-0021

  • Paragon Genomics Product Documents. Paragon Genomics https://www.paragongenomics.com/customer-support/product_documents/

  • Di Tommaso, P. et al. Nextflow enables reproducible computational workflows. Nat. Biotechnol. 35, 316–319 (2017).

    PubMed 

    Google Scholar
     

  • Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J. 17, 10–12 (2011).


    Google Scholar
     

  • Callahan, B. J. et al. DADA2: High-resolution sample inference from illumina amplicon data. Nat. Methods. 13, 581–583 (2016).

    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Gupta, H. et al. Drug-Resistant polymorphisms and copy numbers in Plasmodium falciparum. Mozambique 2015 Emerg. Infect. Dis. 24, 40–48 (2018).

    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Grignard, L. et al. A novel multiplex qPCR assay for detection of Plasmodium falciparum with histidine-rich protein 2 and 3 (pfhrp2 and pfhrp3) deletions in polyclonal infections. EBioMedicine 55, 102757 (2020).

    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • da Silva, C. et al. Targeted and whole-genome sequencing reveal a north-south divide in P. falciparum drug resistance markers and genetic structure in Mozambique. Commun. Biol. 6, 1–11 (2023).

    MATH 

    Google Scholar
     

  • Emiru, T. et al. Evidence for a role of Anopheles stephensi in the spread of drug- and diagnosis-resistant malaria in Africa. Nat. Med. 29, 3203–3211 (2023).

    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Daniels, R. F. et al. Modeling malaria genomics reveals transmission decline and rebound in Senegal. Proc. Natl. Acad. Sci. 112, 7067–7072 (2015).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Chang, H. H. et al. Mapping imported malaria in Bangladesh using parasite genetic and human mobility data. eLife 8, e43481 (2019).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Holzschuh, A. et al. Multiplexed ddPCR-amplicon sequencing reveals isolated Plasmodium falciparum populations amenable to local elimination in Zanzibar, Tanzania. Nat. Commun. 14, 3699 (2023).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Hathaway, N. J., Parobek, C. M., Juliano, J. J. & Bailey, J. A. SeekDeep: single-base resolution de Novo clustering for amplicon deep sequencing. Nucleic Acids Res. 46, e21 (2018).

    CAS 
    PubMed 

    Google Scholar
     

  • Lerch, A. et al. Development of amplicon deep sequencing markers and data analysis pipeline for genotyping multi-clonal malaria infections. BMC Genom. 18, 864 (2017).

    MATH 

    Google Scholar
     

  • Schaffner, S. F., Taylor, A. R., Wong, W., Wirth, D. F. & Neafsey, D. E. HmmIBD: software to infer pairwise identity by descent between haploid genotypes. Malar. J. 17, 196 (2018).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Henden, L., Lee, S., Mueller, I., Barry, A. & Bahlo, M. Identity-by-descent analyses for measuring population dynamics and selection in recombining pathogens. PLOS Genet. 14, e1007279 (2018).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chang, H. H. et al. THE REAL McCOIL: A method for the concurrent Estimation of the complexity of infection and SNP allele frequency for malaria parasites. PLOS Comput. Biol. 13, e1005348 (2017).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Collins, K. A., Snaith, R., Cottingham, M. G., Gilbert, S. C. & Hill, A. V. S. Enhancing protective immunity to malaria with a highly Immunogenic virus-like particle vaccine. Sci. Rep. 7, 46621 (2017).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Laurens, M. B. & RTS S/AS01 vaccine (Mosquirix): an overview. Hum. Vaccines Immunother. 16, 480–489 (2020).

    CAS 
    MATH 

    Google Scholar
     

  • World Health Organization. Malaria vaccine: WHO position paper – May 2024. Wkly. Epidemiol. Rec. 19, 225–248 (2024).


    Google Scholar
     

  • Lagerborg, K. A. et al. Synthetic DNA spike-ins (SDSIs) enable sample tracking and detection of inter-sample contamination in SARS-CoV-2 sequencing workflows. Nat. Microbiol. 7, 108–119 (2022).

    CAS 
    PubMed 

    Google Scholar
     

  • CleanPlex amplicon sequencing for targeted DNA and & Seq, R. N. A. Paragon Genomics https://www.paragongenomics.com/targeted-sequencing/amplicon-sequencing/cleanplex-ngs-amplicon-sequencing/

  • Resources | EPPIcenter. https://eppicenter.ucsf.edu/resources

  • Report on antimalarial. Drug efficacy, resistance and response: 10 years of surveillance (2010–2019). (2020) https://www.who.int/publications/i/item/9789240012813

  • Miotto, O. et al. Genetic architecture of artemisinin-resistant Plasmodium falciparum. Nat. Genet. 47, 226–234 (2015).

    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Source link

    Get RawNews Daily

    Stay informed with our RawNews daily newsletter email

    Sensitive and modular amplicon sequencing of Plasmodium falciparum diversity and resistance for research and public health

    Ancient Maya Took Their Ancestors’ Bones With Them When They Moved House

    Will Smith Confronts Chris Rock Oscars Slap on New Album

    Ship Has Sailed On Chances Of Becoming England’s White-Ball Captain, Says Joe Root