Feinstone, S. M., Kapikian, A. Z. & Purceli, R. H. Hepatitis A: detection by immune electron microscopy of a viruslike antigen associated with acute illness. Science 182, 1026–1028 (1973).
Ticehurst, J. R. et al. Molecular cloning and characterization of hepatitis A virus cDNA. Proc. Natl Acad. Sci. USA 80, 5885–5889 (1983).
Najarian, R. et al. Primary structure and gene organization of human hepatitis A virus. Proc. Natl Acad. Sci. USA 82, 2627–2631 (1985).
Cullen, J. M. & Lemon, S. M. Comparative pathology of hepatitis A virus and hepatitis E virus infection. Cold Spring Harb. Perspect. Med. https://doi.org/10.1101/cshperspect.a033456 (2019).
Glass, M. J., Jia, X. Y. & Summers, D. F. Identification of the hepatitis A virus internal ribosome entry site: in vivo and in vitro analysis of bicistronic RNAs containing the HAV 5’ noncoding region. Virology 193, 842–852 (1993).
Ali, I. K., McKendrick, L., Morley, S. J. & Jackson, R. J. Activity of the hepatitis A virus IRES requires association between the cap-binding translation initiation factor (eIF4E) and eIF4G. J. Virol. 75, 7854–7863 (2001).
McKnight, K. L. & Lemon, S. M. Hepatitis A virus genome organization and replication strategy. Cold Spring Harb. Perspect. Med. https://doi.org/10.1101/cshperspect.a033480 (2018).
Gholizadeh, O. et al. Hepatitis A: viral structure, classification, life cycle, clinical symptoms, diagnosis error, and vaccination. Can. J. Infect. Dis. Med. Microbiol. 2023, 4263309 (2023).
Das, A. et al. Gangliosides are essential endosomal receptors for quasi-enveloped and naked hepatitis A virus. Nat. Microbiol 5, 1069–1078 (2020).
Kulsuptrakul, J., Wang, R., Meyers, N. L., Ott, M. & Puschnik, A. S. A genome-wide CRISPR screen identifies UFMylation and TRAMP-like complexes as host factors required for hepatitis A virus infection. Cell Rep. 34, 108859 (2021).
Rivera-Serrano, E. E., González-López, O., Das, A. & Lemon, S. M. Cellular entry and uncoating of naked and quasi-enveloped human hepatoviruses. eLife 8, e43983 (2019).
Gabrielli, F. et al. Treatment options for hepatitis A and E: a non-systematic review. Viruses 15, 1080 (2023).
Migueres, M., Lhomme, S. & Izopet, J. Hepatitis A: epidemiology, high-risk groups, prevention and research on antiviral treatment. Viruses https://doi.org/10.3390/v13101900 (2021).
World Health Organization. WHO Immunological Basis for Immunization Series: Module 18: Hepatitis A. Update 2019 (WHO, 2019).
Walker, C. M. Adaptive immune responses in hepatitis A virus and hepatitis E virus infections. Cold Spring Harb. Perspect. Med. https://doi.org/10.1101/cshperspect.a033472 (2019).
Herzog, C., Van Herck, K. & Van Damme, P. Hepatitis A vaccination and its immunological and epidemiological long-term effects—a review of the evidence. Hum. Vaccin. Immunother. 17, 1496–1519 (2021).
Qu, L. et al. Disruption of TLR3 signaling due to cleavage of TRIF by the hepatitis A virus protease–polymerase processing intermediate, 3CD. PLoS Pathog. 7, e1002169 (2011).
Wang, D. et al. Hepatitis A virus 3C protease cleaves NEMO to impair induction of beta interferon. J. Virol. 88, 10252–10258 (2014).
Paulmann, D. et al. Hepatitis A virus protein 2B suppresses beta interferon (IFN) gene transcription by interfering with IFN regulatory factor 3 activation. J. Gen. Virol. 89, 1593–1604 (2008).
Fensterl, V. et al. Hepatitis A virus suppresses RIG-I-mediated IRF-3 activation to block induction of beta interferon. J. Virol. 79, 10968–10977 (2005).
Brack, K. et al. Hepatitis A virus inhibits cellular antiviral defense mechanisms induced by double-stranded RNA. J. Virol. 76, 11920–11930 (2002).
Lanford, R. E. et al. Acute hepatitis A virus infection is associated with a limited type I interferon response and persistence of intrahepatic viral RNA. Proc. Natl Acad. Sci. USA 108, 11223–11228 (2011).
Yang, Y. et al. Disruption of innate immunity due to mitochondrial targeting of a picornaviral protease precursor. Proc. Natl Acad. Sci. USA 104, 7253–7258 (2007).
Mo, L. et al. Hepatitis A virus-induced hsa-miR-146a-5p attenuates IFN-β signaling by targeting adaptor protein TRAF6. Arch. Virol. 166, 789–799 (2021).
Colasanti, O. et al. Comparison of HAV and HCV infections in vivo and in vitro reveals distinct patterns of innate immune evasion and activation. J. Hepatol. 79, 645–656 (2023).
Kim, J. et al. Innate-like cytotoxic function of bystander-activated CD8+ T cells is associated with liver injury in acute hepatitis A. Immunity 48, 161–173.e165 (2018).
Choi, Y. S. et al. Tumor necrosis factor-producing T-regulatory cells are associated with severe liver injury in patients with acute hepatitis A. Gastroenterology 154, 1047–1060 (2018).
Shin, E. C., Sung, P. S. & Park, S. H. Immune responses and immunopathology in acute and chronic viral hepatitis. Nat. Rev. Immunol. 16, 509–523 (2016).
Kanda, T. et al. Cell culture systems and drug targets for hepatitis A virus infection. Viruses https://doi.org/10.3390/v12050533 (2020).
Feng, Z. & Lemon, S. M. Innate immunity to enteric hepatitis viruses. Cold Spring Harb. Perspect. Med. https://doi.org/10.1101/cshperspect.a033464 (2019).
Żeromski, J., Kierepa, A., Brzezicha, B., Kowala-Piaskowska, A. & Mozer-Lisewska, I. Pattern recognition receptors: significance of expression in the liver. Arch. Immunol. Ther. Exp. https://doi.org/10.1007/s00005-020-00595-1 (2020).
Kawai, T. & Akira, S. The roles of TLRs, RLRs and NLRs in pathogen recognition. Int. Immunol. 21, 317–337 (2009).
Quicke, K. M., Kim, K. Y., Horvath, C. M. & Suthar, M. S. RNA helicase LGP2 negatively regulates RIG-I signaling by preventing TRIM25-mediated caspase activation and recruitment domain ubiquitination. J. Interferon Cytokine Res. 39, 669–683 (2019).
Flehmig, B., Vallbracht, A. & Wurster, G. Hepatitis A virus in cell culture. III. Propagation of hepatitis A virus in human embryo kidney cells and human embryo fibroblast strains. Med. Microbiol. Immunol. 170, 83–89 (1981).
Flehmig, B. Hepatitis A-virus in cell culture: I. Propagation of different hepatitis A-virus isolates in a fetal rhesus monkey kidney cell line (Frhk-4). Med. Microbiol. Immunol. 168, 239–248 (1980).
Sung, P. S. et al. CXCL10 is produced in hepatitis A virus-infected cells in an IRF3-dependent but IFN-independent manner. Sci. Rep. 7, 6387 (2017).
Feng, Z. et al. Human pDCs preferentially sense enveloped hepatitis A virions. J. Clin. Invest 125, 169–176 (2015).
Kusov, Y. & Gauss-Müller, V. Improving proteolytic cleavage at the 3A/3B site of the hepatitis A virus polyprotein impairs processing and particle formation, and the impairment can be complemented intrans by 3AB and 3ABC. J. Virol. 73, 9867–9878 (1999).
Hirai-Yuki, A. et al. MAVS-dependent host species range and pathogenicity of human hepatitis A virus. Science 353, 1541–1545 (2016).
Sun, L. et al. Viral protease cleavage of MAVS in genetically modified mice with hepatitis A virus infection. J. Hepatol. https://doi.org/10.1016/j.jhep.2022.09.013 (2022).
Purcell, R. H. & Emerson, S. U. Animal models of hepatitis A and E. ILAR J. 42, 161–177 (2001).
Song, Y. J. et al. Experimental evidence of hepatitis A virus infection in pigs. J. Med. Virol. 88, 631–638 (2016).
Meuleman, P. et al. Morphological and biochemical characterization of a human liver in a uPA-SCID mouse chimera. Hepatology 41, 847–856 (2005).
Wünschmann, S., Becker, B. & Vallbracht, A. Hepatitis A virus suppresses monocyte-to-macrophage maturation in vitro. J. Virol. 76, 4350–4356 (2002).
Vallbracht, A. et al. Cell-mediated cytotoxicity in hepatitis A virus infection. Hepatology 6, 1308–1314 (1986).
Waldrop, S. L., Pitcher, C. J., Peterson, D. M., Maino, V. C. & Picker, L. J. Determination of antigen-specific memory/effector CD4+ T cell frequencies by flow cytometry: evidence for a novel, antigen-specific homeostatic mechanism in HIV-associated immunodeficiency. J. Clin. Invest 99, 1739–1750 (1997).
Altman, J. D. et al. Phenotypic analysis of antigen-specific T lymphocytes. Science 274, 94–96 (1996).
Schulte, I. et al. Characterization of CD8+ T-cell response in acute and resolved hepatitis A virus infection. J. Hepatol. 54, 201–208 (2011).
Zhou, Y. et al. Dominance of the CD4+ T helper cell response during acute resolving hepatitis A virus infection. J. Exp. Med 209, 1481–1492 (2012).
Shin, E. C. & Jeong, S. H. Natural history, clinical manifestations, and pathogenesis of hepatitis A. Cold Spring Harb. Perspect. Med. https://doi.org/10.1101/cshperspect.a031708 (2018).
Gauss-Müller, V., Frösner, G. G. & Deinhardt, F. Propagation of hepatitis A virus in human embryo fibroblasts. J. Med. Virol. 7, 233–239 (1981).
Zahn, J., Vallbracht, A. & Flehmig, B. Hepatitis A-virus in cell culture. Med. Microbiol. Immunol. 173, 9–17 (1984).
Seo, I. H. et al. IL-15 enhances CCR5-mediated migration of memory CD8+ T cells by upregulating CCR5 expression in the absence of TCR stimulation. Cell Rep. 36, 109438 (2021).
Zhang, X. et al. IL-15 induced bystander activation of CD8+ T cells may mediate endothelium injury through NKG2D in Hantaan virus infection. Front. Cell Infect. Microbiol. 12, 1084841 (2022).
Huang, C. H. et al. Innate-like bystander-activated CD38+ HLA-DR+ CD8+ T cells play a pathogenic role in patients with chronic hepatitis C. Hepatology 76, 803–818 (2022).
Belkaya, S. et al. Inherited IL-18BP deficiency in human fulminant viral hepatitis. J. Exp. Med. 216, 1777–1790 (2019).
Rha, M. S. et al. Human liver CD8+ MAIT cells exert TCR/MR1-independent innate-like cytotoxicity in response to IL-15. J. Hepatol. 73, 640–650 (2020).
Legoux, F., Salou, M. & Lantz, O. MAIT cell development and functions: the microbial connection. Immunity 53, 710–723 (2020).
Accapezzato, D. et al. Hepatic expansion of a virus-specific regulatory CD8+ T cell population in chronic hepatitis C virus infection. J. Clin. Invest. 113, 963–972 (2004).
Franzese, O. et al. Modulation of the CD8+-T-cell response by CD4+ CD25+ regulatory T cells in patients with hepatitis B virus infection. J. Virol. 79, 3322–3328 (2005).
Jung, M. K. & Shin, E. C. Regulatory T cells in hepatitis B and C virus infections. Immune Netw. 16, 330–336 (2016).
Choi, Y. S. et al. Liver injury in acute hepatitis A is associated with decreased frequency of regulatory T cells caused by Fas-mediated apoptosis. Gut 64, 1303–1313 (2015).
Manangeeswaran, M. et al. Binding of hepatitis A virus to its cellular receptor 1 inhibits T-regulatory cell functions in humans. Gastroenterology 142, 1516–1525.e1513 (2012).
Das, A. et al. Cell entry and release of quasi-enveloped human hepatitis viruses. Nat. Rev. Microbiol. 21, 573–589 (2023).
Freeman, G. J., Casasnovas, J. M., Umetsu, D. T. & DeKruyff, R. H. TIM genes: a family of cell surface phosphatidylserine receptors that regulate innate and adaptive immunity. Immunol. Rev. 235, 172–189 (2010).
Kim, S. Y. et al. Epigenetic scars in regulatory T cells are retained after successful treatment of chronic hepatitis C with direct-acting antivirals. J. Hepatol. 81, 806–818 (2024).
Kim, H. Y. et al. A polymorphism in TIM1 is associated with susceptibility to severe hepatitis A virus infection in humans. J. Clin. Invest 121, 1111–1118 (2011).