Stock Ticker

Redefining the immune landscape of hepatitis A virus infection

  • Feinstone, S. M., Kapikian, A. Z. & Purceli, R. H. Hepatitis A: detection by immune electron microscopy of a viruslike antigen associated with acute illness. Science 182, 1026–1028 (1973).

    PubMed 
    CAS 

    Google Scholar
     

  • Ticehurst, J. R. et al. Molecular cloning and characterization of hepatitis A virus cDNA. Proc. Natl Acad. Sci. USA 80, 5885–5889 (1983).

    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Najarian, R. et al. Primary structure and gene organization of human hepatitis A virus. Proc. Natl Acad. Sci. USA 82, 2627–2631 (1985).

    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Cullen, J. M. & Lemon, S. M. Comparative pathology of hepatitis A virus and hepatitis E virus infection. Cold Spring Harb. Perspect. Med. https://doi.org/10.1101/cshperspect.a033456 (2019).

  • Glass, M. J., Jia, X. Y. & Summers, D. F. Identification of the hepatitis A virus internal ribosome entry site: in vivo and in vitro analysis of bicistronic RNAs containing the HAV 5’ noncoding region. Virology 193, 842–852 (1993).

    PubMed 
    CAS 

    Google Scholar
     

  • Ali, I. K., McKendrick, L., Morley, S. J. & Jackson, R. J. Activity of the hepatitis A virus IRES requires association between the cap-binding translation initiation factor (eIF4E) and eIF4G. J. Virol. 75, 7854–7863 (2001).

    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • McKnight, K. L. & Lemon, S. M. Hepatitis A virus genome organization and replication strategy. Cold Spring Harb. Perspect. Med. https://doi.org/10.1101/cshperspect.a033480 (2018).

  • Gholizadeh, O. et al. Hepatitis A: viral structure, classification, life cycle, clinical symptoms, diagnosis error, and vaccination. Can. J. Infect. Dis. Med. Microbiol. 2023, 4263309 (2023).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Das, A. et al. Gangliosides are essential endosomal receptors for quasi-enveloped and naked hepatitis A virus. Nat. Microbiol 5, 1069–1078 (2020).

    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Kulsuptrakul, J., Wang, R., Meyers, N. L., Ott, M. & Puschnik, A. S. A genome-wide CRISPR screen identifies UFMylation and TRAMP-like complexes as host factors required for hepatitis A virus infection. Cell Rep. 34, 108859 (2021).

    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Rivera-Serrano, E. E., González-López, O., Das, A. & Lemon, S. M. Cellular entry and uncoating of naked and quasi-enveloped human hepatoviruses. eLife 8, e43983 (2019).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gabrielli, F. et al. Treatment options for hepatitis A and E: a non-systematic review. Viruses 15, 1080 (2023).

    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Migueres, M., Lhomme, S. & Izopet, J. Hepatitis A: epidemiology, high-risk groups, prevention and research on antiviral treatment. Viruses https://doi.org/10.3390/v13101900 (2021).

  • World Health Organization. WHO Immunological Basis for Immunization Series: Module 18: Hepatitis A. Update 2019 (WHO, 2019).

  • Walker, C. M. Adaptive immune responses in hepatitis A virus and hepatitis E virus infections. Cold Spring Harb. Perspect. Med. https://doi.org/10.1101/cshperspect.a033472 (2019).

  • Herzog, C., Van Herck, K. & Van Damme, P. Hepatitis A vaccination and its immunological and epidemiological long-term effects—a review of the evidence. Hum. Vaccin. Immunother. 17, 1496–1519 (2021).

    PubMed 
    CAS 

    Google Scholar
     

  • Qu, L. et al. Disruption of TLR3 signaling due to cleavage of TRIF by the hepatitis A virus protease–polymerase processing intermediate, 3CD. PLoS Pathog. 7, e1002169 (2011).

    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Wang, D. et al. Hepatitis A virus 3C protease cleaves NEMO to impair induction of beta interferon. J. Virol. 88, 10252–10258 (2014).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Paulmann, D. et al. Hepatitis A virus protein 2B suppresses beta interferon (IFN) gene transcription by interfering with IFN regulatory factor 3 activation. J. Gen. Virol. 89, 1593–1604 (2008).

    PubMed 
    CAS 

    Google Scholar
     

  • Fensterl, V. et al. Hepatitis A virus suppresses RIG-I-mediated IRF-3 activation to block induction of beta interferon. J. Virol. 79, 10968–10977 (2005).

    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Brack, K. et al. Hepatitis A virus inhibits cellular antiviral defense mechanisms induced by double-stranded RNA. J. Virol. 76, 11920–11930 (2002).

    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Lanford, R. E. et al. Acute hepatitis A virus infection is associated with a limited type I interferon response and persistence of intrahepatic viral RNA. Proc. Natl Acad. Sci. USA 108, 11223–11228 (2011).

    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Yang, Y. et al. Disruption of innate immunity due to mitochondrial targeting of a picornaviral protease precursor. Proc. Natl Acad. Sci. USA 104, 7253–7258 (2007).

    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Mo, L. et al. Hepatitis A virus-induced hsa-miR-146a-5p attenuates IFN-β signaling by targeting adaptor protein TRAF6. Arch. Virol. 166, 789–799 (2021).

    PubMed 
    CAS 

    Google Scholar
     

  • Colasanti, O. et al. Comparison of HAV and HCV infections in vivo and in vitro reveals distinct patterns of innate immune evasion and activation. J. Hepatol. 79, 645–656 (2023).

    PubMed 
    CAS 

    Google Scholar
     

  • Kim, J. et al. Innate-like cytotoxic function of bystander-activated CD8+ T cells is associated with liver injury in acute hepatitis A. Immunity 48, 161–173.e165 (2018).

    PubMed 
    CAS 

    Google Scholar
     

  • Choi, Y. S. et al. Tumor necrosis factor-producing T-regulatory cells are associated with severe liver injury in patients with acute hepatitis A. Gastroenterology 154, 1047–1060 (2018).

    PubMed 
    CAS 

    Google Scholar
     

  • Shin, E. C., Sung, P. S. & Park, S. H. Immune responses and immunopathology in acute and chronic viral hepatitis. Nat. Rev. Immunol. 16, 509–523 (2016).

    PubMed 
    CAS 

    Google Scholar
     

  • Kanda, T. et al. Cell culture systems and drug targets for hepatitis A virus infection. Viruses https://doi.org/10.3390/v12050533 (2020).

  • Feng, Z. & Lemon, S. M. Innate immunity to enteric hepatitis viruses. Cold Spring Harb. Perspect. Med. https://doi.org/10.1101/cshperspect.a033464 (2019).

  • Żeromski, J., Kierepa, A., Brzezicha, B., Kowala-Piaskowska, A. & Mozer-Lisewska, I. Pattern recognition receptors: significance of expression in the liver. Arch. Immunol. Ther. Exp. https://doi.org/10.1007/s00005-020-00595-1 (2020).

    Article 

    Google Scholar
     

  • Kawai, T. & Akira, S. The roles of TLRs, RLRs and NLRs in pathogen recognition. Int. Immunol. 21, 317–337 (2009).

    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Quicke, K. M., Kim, K. Y., Horvath, C. M. & Suthar, M. S. RNA helicase LGP2 negatively regulates RIG-I signaling by preventing TRIM25-mediated caspase activation and recruitment domain ubiquitination. J. Interferon Cytokine Res. 39, 669–683 (2019).

    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Flehmig, B., Vallbracht, A. & Wurster, G. Hepatitis A virus in cell culture. III. Propagation of hepatitis A virus in human embryo kidney cells and human embryo fibroblast strains. Med. Microbiol. Immunol. 170, 83–89 (1981).

    PubMed 
    CAS 

    Google Scholar
     

  • Flehmig, B. Hepatitis A-virus in cell culture: I. Propagation of different hepatitis A-virus isolates in a fetal rhesus monkey kidney cell line (Frhk-4). Med. Microbiol. Immunol. 168, 239–248 (1980).

    PubMed 
    CAS 

    Google Scholar
     

  • Sung, P. S. et al. CXCL10 is produced in hepatitis A virus-infected cells in an IRF3-dependent but IFN-independent manner. Sci. Rep. 7, 6387 (2017).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Feng, Z. et al. Human pDCs preferentially sense enveloped hepatitis A virions. J. Clin. Invest 125, 169–176 (2015).

    PubMed 

    Google Scholar
     

  • Kusov, Y. & Gauss-Müller, V. Improving proteolytic cleavage at the 3A/3B site of the hepatitis A virus polyprotein impairs processing and particle formation, and the impairment can be complemented intrans by 3AB and 3ABC. J. Virol. 73, 9867–9878 (1999).

    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Hirai-Yuki, A. et al. MAVS-dependent host species range and pathogenicity of human hepatitis A virus. Science 353, 1541–1545 (2016).

    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Sun, L. et al. Viral protease cleavage of MAVS in genetically modified mice with hepatitis A virus infection. J. Hepatol. https://doi.org/10.1016/j.jhep.2022.09.013 (2022).

  • Purcell, R. H. & Emerson, S. U. Animal models of hepatitis A and E. ILAR J. 42, 161–177 (2001).

    PubMed 
    CAS 

    Google Scholar
     

  • Song, Y. J. et al. Experimental evidence of hepatitis A virus infection in pigs. J. Med. Virol. 88, 631–638 (2016).

    PubMed 
    CAS 

    Google Scholar
     

  • Meuleman, P. et al. Morphological and biochemical characterization of a human liver in a uPA-SCID mouse chimera. Hepatology 41, 847–856 (2005).

    PubMed 
    CAS 

    Google Scholar
     

  • Wünschmann, S., Becker, B. & Vallbracht, A. Hepatitis A virus suppresses monocyte-to-macrophage maturation in vitro. J. Virol. 76, 4350–4356 (2002).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Vallbracht, A. et al. Cell-mediated cytotoxicity in hepatitis A virus infection. Hepatology 6, 1308–1314 (1986).

    PubMed 
    CAS 

    Google Scholar
     

  • Waldrop, S. L., Pitcher, C. J., Peterson, D. M., Maino, V. C. & Picker, L. J. Determination of antigen-specific memory/effector CD4+ T cell frequencies by flow cytometry: evidence for a novel, antigen-specific homeostatic mechanism in HIV-associated immunodeficiency. J. Clin. Invest 99, 1739–1750 (1997).

    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Altman, J. D. et al. Phenotypic analysis of antigen-specific T lymphocytes. Science 274, 94–96 (1996).

    PubMed 
    CAS 

    Google Scholar
     

  • Schulte, I. et al. Characterization of CD8+ T-cell response in acute and resolved hepatitis A virus infection. J. Hepatol. 54, 201–208 (2011).

    PubMed 
    CAS 

    Google Scholar
     

  • Zhou, Y. et al. Dominance of the CD4+ T helper cell response during acute resolving hepatitis A virus infection. J. Exp. Med 209, 1481–1492 (2012).

    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Shin, E. C. & Jeong, S. H. Natural history, clinical manifestations, and pathogenesis of hepatitis A. Cold Spring Harb. Perspect. Med. https://doi.org/10.1101/cshperspect.a031708 (2018).

  • Gauss-Müller, V., Frösner, G. G. & Deinhardt, F. Propagation of hepatitis A virus in human embryo fibroblasts. J. Med. Virol. 7, 233–239 (1981).

    PubMed 

    Google Scholar
     

  • Zahn, J., Vallbracht, A. & Flehmig, B. Hepatitis A-virus in cell culture. Med. Microbiol. Immunol. 173, 9–17 (1984).

    PubMed 
    CAS 

    Google Scholar
     

  • Seo, I. H. et al. IL-15 enhances CCR5-mediated migration of memory CD8+ T cells by upregulating CCR5 expression in the absence of TCR stimulation. Cell Rep. 36, 109438 (2021).

    PubMed 
    CAS 

    Google Scholar
     

  • Zhang, X. et al. IL-15 induced bystander activation of CD8+ T cells may mediate endothelium injury through NKG2D in Hantaan virus infection. Front. Cell Infect. Microbiol. 12, 1084841 (2022).

    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Huang, C. H. et al. Innate-like bystander-activated CD38+ HLA-DR+ CD8+ T cells play a pathogenic role in patients with chronic hepatitis C. Hepatology 76, 803–818 (2022).

    PubMed 
    CAS 

    Google Scholar
     

  • Belkaya, S. et al. Inherited IL-18BP deficiency in human fulminant viral hepatitis. J. Exp. Med. 216, 1777–1790 (2019).

    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Rha, M. S. et al. Human liver CD8+ MAIT cells exert TCR/MR1-independent innate-like cytotoxicity in response to IL-15. J. Hepatol. 73, 640–650 (2020).

    PubMed 
    CAS 

    Google Scholar
     

  • Legoux, F., Salou, M. & Lantz, O. MAIT cell development and functions: the microbial connection. Immunity 53, 710–723 (2020).

    PubMed 
    CAS 

    Google Scholar
     

  • Accapezzato, D. et al. Hepatic expansion of a virus-specific regulatory CD8+ T cell population in chronic hepatitis C virus infection. J. Clin. Invest. 113, 963–972 (2004).

    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Franzese, O. et al. Modulation of the CD8+-T-cell response by CD4+ CD25+ regulatory T cells in patients with hepatitis B virus infection. J. Virol. 79, 3322–3328 (2005).

    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Jung, M. K. & Shin, E. C. Regulatory T cells in hepatitis B and C virus infections. Immune Netw. 16, 330–336 (2016).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Choi, Y. S. et al. Liver injury in acute hepatitis A is associated with decreased frequency of regulatory T cells caused by Fas-mediated apoptosis. Gut 64, 1303–1313 (2015).

    PubMed 

    Google Scholar
     

  • Manangeeswaran, M. et al. Binding of hepatitis A virus to its cellular receptor 1 inhibits T-regulatory cell functions in humans. Gastroenterology 142, 1516–1525.e1513 (2012).

    PubMed 
    CAS 

    Google Scholar
     

  • Das, A. et al. Cell entry and release of quasi-enveloped human hepatitis viruses. Nat. Rev. Microbiol. 21, 573–589 (2023).

    PubMed 
    CAS 

    Google Scholar
     

  • Freeman, G. J., Casasnovas, J. M., Umetsu, D. T. & DeKruyff, R. H. TIM genes: a family of cell surface phosphatidylserine receptors that regulate innate and adaptive immunity. Immunol. Rev. 235, 172–189 (2010).

    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Kim, S. Y. et al. Epigenetic scars in regulatory T cells are retained after successful treatment of chronic hepatitis C with direct-acting antivirals. J. Hepatol. 81, 806–818 (2024).

    PubMed 
    CAS 

    Google Scholar
     

  • Kim, H. Y. et al. A polymorphism in TIM1 is associated with susceptibility to severe hepatitis A virus infection in humans. J. Clin. Invest 121, 1111–1118 (2011).

    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Source link

    Get RawNews Daily

    Stay informed with our RawNews daily newsletter email

    Redefining the immune landscape of hepatitis A virus infection

    Even the richest Americans face shorter lifespans than their European counterparts, study finds

    Sidney Crosby joins ex-teammate’s watch brand as investor

    Teddi Mellencamp Says Docs Found More Tumors, After Thinking She Beat Cancer