WHO. Global Tuberculosis Report (2024).
Malik, Z. A., Iyer, S. S. & Kusner, D. J. Mycobacterium tuberculosis phagosomes exhibit altered calmodulin-dependent signal transduction: contribution to inhibition of phagosome-lysosome fusion and intracellular survival in human macrophages. J. Immunol. 166, 3392–3401 (2001).
Pan, H. et al. Ipr1 gene mediates innate immunity to tuberculosis. Nature 434, 767–772 (2005).
Aguiló, N., Marinova, D. & Martín, C. J. P. ESX-1-induced apoptosis is involved in cell-to-cell spread of Mycobacterium tuberculosis. Cell Microbiol. 15, 1994–2005 (2013).
Behar, S. M. et al. Apoptosis is an innate defense function of macrophages against. Mucosal Immunol. 4, 279–287 (2011).
Zhang, J., Jiang, R., Takayama, H. & Tanaka, Y. Survival of virulent Mycobacterium tuberculosis involves preventing apoptosis induced by Bcl-2 upregulation and release resulting from necrosis in J774 macrophages. Microbiol Immunol. 49, 845–852 (2005).
Urbanowski, M. E., Ordonez, A. A., Ruiz-Bedoya, C. A., Jain, S. K. & Bishai, W. R. Cavitary tuberculosis: the gateway of disease transmission. Lancet Infect. Dis. 20, e117–e128 (2020).
DiFazio, R. M. et al. Active transforming growth factor-β is associated with phenotypic changes in granulomas after drug treatment in pulmonary tuberculosis. Fibrogenes. tissue repair 9, 1–11 (2016).
Sly, L. M., Hingley-Wilson, S. M., Reiner, N. E. & McMaster, W. R. Survival of Mycobacterium tuberculosis in host macrophages involves resistance to apoptosis dependent upon induction of antiapoptotic Bcl-2 family member Mcl-1. J. Immunol. 170, 430–437 (2003).
Wang, Q. M., Liu, S. P., Tang, Y., Liu, Q. H. & Yao, Y. J. MPT64 Protein from Mycobacterium tuberculosis Inhibits Apoptosis of Macrophages through NF-kB-miRNA21-Bcl-2 Pathway. Plos One 9, e100949 (2014).
Zhao, X. et al. Bcl-x(L) mediates RIPK3-dependent necrosis in M. tuberculosis-infected macrophages. Mucosal Immunol. 10, 1553–1568 (2017).
Gan, H. et al. Mycobacterium tuberculosis blocks crosslinking of annexin-1 and apoptotic envelope formation on infected macrophages to maintain virulence. Nat. Immunol. 9, 1189–1197 (2008).
Arnett, E. et al. Combination of MCL-1 and BCL-2 inhibitors is a promising approach for a host-directed therapy for tuberculosis. Biomedicine Pharmacother. 168, 115738 (2023).
Wilkinson, R. J. Host-directed therapies against tuberculosis. Lancet Respir. Med 2, 85–87 (2014).
Zumla, A. et al. Host-directed therapies for infectious diseases: current status, recent progress, and future prospects. Lancet Infect. Dis. 16, e47–e63 (2016).
Kaufmann, S. H. E., Dorhoi, A., Hotchkiss, R. S. & Bartenschlager, R. Host-directed therapies for bacterial and viral infections. Nat. Rev. Drug Discov. 17, 35–56 (2018).
Wilson, W. H. et al. Navitoclax, a targeted high-affinity inhibitor of BCL-2, in lymphoid malignancies: a phase 1 dose-escalation study of safety, pharmacokinetics, pharmacodynamics, and antitumour activity. Lancet Oncol. 11, 1149–1159 (2010).
Tse, C. et al. ABT-263: a potent and orally bioavailable Bcl-2 family inhibitor. Cancer Res 68, 3421–3428 (2008).
Chen, J. et al. The Bcl-2/Bcl-X(L)/Bcl-w inhibitor, navitoclax, enhances the activity of chemotherapeutic agents in vitro and in vivo. Mol. Cancer Ther. 10, 2340–2349 (2011).
Lagares, D. et al. Targeted apoptosis of myofibroblasts with the BH3 mimetic ABT-263 reverses established fibrosis. Sci. Transl. Med 9, eaal3765 (2017).
Harper, J. et al. Mouse model of necrotic tuberculosis granulomas develops hypoxic lesions. J. Infect. Dis. 205, 595–602 (2012).
Ordonez, A. A. et al. Caspase-Based PET for Evaluating Pro-Apoptotic Treatments in a Tuberculosis Mouse Model. Mol. Imaging Biol. 22, 1489–1494 (2020).
Davis, S. L. et al. Noninvasive pulmonary [18F]-2-fluoro-deoxy-D-glucose positron emission tomography correlates with bactericidal activity of tuberculosis drug treatment. Antimicrob. Agents Chemother. 53, 4879–4884 (2009).
Weinstein, E. A. et al. Noninvasive determination of 2-[18F]-fluoroisonicotinic acid hydrazide pharmacokinetics by positron emission tomography in Mycobacterium tuberculosis-infected mice. Antimicrob. Agents Chemother. 56, 6284–6290 (2012).
Carow, B. et al. Spatial and temporal localization of immune transcripts defines hallmarks and diversity in the tuberculosis granuloma. Nat. Commun. 10, 1823 (2019).
McCaffrey, E. F. et al. The immunoregulatory landscape of human tuberculosis granulomas. Nat. Immunol. 23, 318–329 (2022).
Abengozar-Muela, M. et al. Diverse immune environments in human lung tuberculosis granulomas assessed by quantitative multiplexed immunofluorescence. Mod. Pathol. 33, 2507–2519 (2020).
Acharya, P. S., Zukas, A., Chandan, V., Katzenstein, A. L. & Pure, E. Fibroblast activation protein: a serine protease expressed at the remodeling interface in idiopathic pulmonary fibrosis. Hum. Pathol. 37, 352–360 (2006).
Yang, J. et al. Effect of rifampin on the pharmacokinetics, safety and tolerability of navitoclax (ABT-263), a dual inhibitor of Bcl-2 and Bcl-XL, in patients with cancer. J. Clin. Pharm. Ther. 39, 680–684 (2014).
Bell, H. L. et al. Combination p53 activation and BCL-x(L)/BCL-2 inhibition as a therapeutic strategy in high-risk and relapsed acute lymphoblastic leukemia. Leukemia. 38, 1223–1235 (2024).
Allwood, B. W. et al. Post-tuberculosis lung health: perspectives from the First International Symposium. Int J. Tuberc. Lung Dis. 24, 820–828 (2020).
Maleche-Obimbo, E. et al. Magnitude and factors associated with post-tuberculosis lung disease in low- and middle-income countries: A systematic review and meta-analysis. PLOS Glob. Public Health 2, e0000805 (2022).
Arnett, E. & Schlesinger, L. S. Live and let die: TB control by enhancing apoptosis. Immunity 54, 1625–1627 (2021).
Cubillos-Angulo, J. M. et al. Host-directed therapies in pulmonary tuberculosis: Updates on anti-inflammatory drugs. Front Med (Lausanne) 9, 970408 (2022).
Stutz, M. D. et al. Macrophage and neutrophil death programs differentially confer resistance to tuberculosis. Immunity 54, 1758–1771 e1757 (2021).
Mohamad Anuar, N. N., Nor Hisam, N. S., Liew, S. L. & Ugusman, A. Clinical review: navitoclax as a pro-apoptotic and anti-fibrotic agent. Front. Pharmacol. 11, 564108 (2020).
Roberts, A. W. et al. Targeting BCL2 with venetoclax in relapsed chronic lymphocytic leukemia. N. Engl. J. Med. 374, 311–322 (2016).
Roberts, A. W. et al. Substantial susceptibility of chronic lymphocytic leukemia to BCL2 inhibition: results of a phase I study of navitoclax in patients with relapsed or refractory disease. J. Clin. Oncol. 30, 488–496 (2012).
Savage-Elliott, I., Wu, V. J. & Sanchez, F. L. Drug-Induced Thrombocytopenia Secondary to Commonly Used Antibiotics in Total Joint Arthroplasty. Arthroplast Today 6, 137–140 (2020).
Aurbach, K., Spindler, M., Haining, E. J., Bender, M. & Pleines, I. Blood collection, platelet isolation and measurement of platelet count and size in mice—a practical guide. Platelets 30, 698–707 (2019).
Peters, L. L. et al. Large-scale, high-throughput screening for coagulation and hematologic phenotypes in mice. Physiol. Genomics 11, 185–193 (2002).
Jirouskova, M., Shet, A. S. & Johnson, G. J. A guide to murine platelet structure, function, assays, and genetic alterations. J. Thromb. Haemost. 5, 661–669 (2007).
Ordonez, A. A. et al. Mouse model of pulmonary cavitary tuberculosis and expression of matrix metalloproteinase-9. Dis. Model Mech. 9, 779–788 (2016).
Xu, J. et al. Contribution of pretomanid to novel regimens containing bedaquiline with either linezolid or moxifloxacin and pyrazinamide in murine models of tuberculosis. Antimicrob. Agents Chemother. 63, https://doi.org/10.1128/aac.00021-00019 (2019).
Tasneen, R. et al. Sterilizing Activity of Novel TMC207-and PA-824-Containing Regimens in a Murine Model of Tuberculosis. Antimicrobial Agents Chemother. 55, 5485–5492 (2011).
Ordonez, A. A. et al. Adjunct antibody administration with standard treatment reduces relapse rates in a murine tuberculosis model of necrotic granulomas. Plos One 13, e0197474 (2018).
Skerry, C., Harper, J., Klunk, M., Bishai, W. R. & Jain, S. K. Adjunctive TNF inhibition with standard treatment enhances bacterial clearance in a murine model of necrotic TB granulomas. Plos One 7, e39680 (2012).
Jain, S. K. et al. Tuberculous meningitis: a roadmap for advancing basic and translational research. Nat. Immunol. 19, 521–525 (2018).
Be, N. A., Kim, K. S., Bishai, W. R. & Jain, S. K. Pathogenesis of central nervous system tuberculosis. Curr. Mol. Med. 9, 94–99 (2009).
Rowe, S. P. & Pomper, M. G. Molecular imaging in oncology: Current impact and future directions. CA Cancer J. Clin. 72, 333–352 (2022).
Ordonez, A. A. et al. Dynamic imaging in patients with tuberculosis reveals heterogeneous drug exposures in pulmonary lesions. Nat. Med 26, 529–534 (2020).
Chen, X. et al. Dynamic PET reveals compartmentalized brain and lung tissue antibiotic exposures of tuberculosis drugs. Nat. Commun. 15, 6657 (2024).
Mota, F. et al. Dynamic (18)F-Pretomanid PET imaging in animal models of TB meningitis and human studies. Nat. Commun. 13, 7974 (2022).
Ordonez A. A. et al. Molecular imaging of bacterial infections: Overcoming the barriers to clinical translation. Sci Transl Med 11, (2019).
Ordonez A. A. et al. Visualizing the dynamics of tuberculosis pathology using molecular imaging. J Clin Invest 131, (2021).
Bentley, J. K. et al. Rhinovirus colocalizes with CD68- and CD11b-positive macrophages following experimental infection in humans. J. Allergy Clin. Immunol. 132, 758–761 e753 (2013).
Hong, J.-H. et al. Distribution of CD68-positive and CD11b-positive cells in the TRAMP-C1 tumors after high-dose in vivo irradiation. Cancer Res. 68, 5335–5335 (2008).
Betjes, M. G. H., Haks, M. C., Tuk, C. W. & Beelen, R. H. J. Monoclonal-Antibody Ebm11 (Anti-Cd68) Discriminates between Dendritic Cells and Macrophages after Short-Term Culture. Immunobiology 183, 79–87 (1991).
Lounis, N., Vranckx, L., Gevers, T., Kaniga, K. & Andries, K. In vitro culture conditions affecting minimal inhibitory concentration of bedaquiline against M. tuberculosis. Med Mal. Infect. 46, 220–225 (2016).
Fortt, R., Smith, G., Awais, R. O., Luthra, S. K. & Aboagye, E. O. Automated GMP synthesis of [(18)F]ICMT-11 for in vivo imaging of caspase-3 activity. Nucl. Med Biol. 39, 1000–1005 (2012).
Chen, R. et al. Tumor-to-blood ratio for assessment of fibroblast activation protein receptor density in pancreatic cancer using [68Ga] Ga-FAPI-04. Eur. J. Nucl. Med. Mol. Imaging 50, 929–936 (2023).
Glatting, F. M. et al. Subclass analysis of malignant, inflammatory and degenerative pathologies based on multiple timepoint FAPI-PET acquisitions using FAPI-02, FAPI-46 and FAPI-74. Cancers 14, 5301 (2022).
Scott, S. C. et al. Validation of a robust and rapid liquid chromatography tandem mass spectrometric method for the quantitative analysis of navitoclax. Biomed. Chromatogr. 36, e5289 (2022).
Ruiz-Bedoya, C. A. et al. High-dose rifampin improves bactericidal activity without increased intracerebral inflammation in animal models of tuberculous meningitis. J. Clin. Invest. 132, e155851 (2022).
Lin, S. F., Lin, J. D., Hsueh, C., Chou, T. C. & Wong, R. J. A cyclin-dependent kinase inhibitor, dinaciclib in preclinical treatment models of thyroid cancer. Plos One 12, e0172315 (2017).