Stock Ticker

Exploiting social traits for clinical applications in bacteria and viruses

  • West, S. A., Griffin, A. S., Gardner, A. & Diggle, S. P. Social evolution theory for microorganisms. Nat. Rev. Microbiol. 4, 597–607 (2006).

    CAS 
    PubMed 

    Google Scholar
     

  • Leeks, A., West, S. & Ghoul, M. The evolution of cheating in viruses. Nat. Commun. 12, 2916 (2021).


    Google Scholar
     

  • Brown, S. P., West, S. A., Diggle, S. P. & Griffin, A. S. Social evolution in micro-organisms and a Trojan horse approach to medical intervention strategies. Philos. Trans. R. Soc. B 364, 3157–3168 (2009).


    Google Scholar
     

  • Rumbaugh, K. P. et al. Quorum sensing and the social evolution of bacterial virulence. Curr. Biol. 19, 341–345 (2009).

    CAS 
    PubMed 

    Google Scholar
     

  • Gurney, J., Simonet, C., Waldetoft, K. & Brown, S. Challenges and opportunities for cheat therapy in the control of bacterial infections. Nat. Prod. Rep. 39, 325–334 (2022).

    CAS 
    PubMed 

    Google Scholar
     

  • Lissens, M., Joos, M., Lories, B. & Steenackers, H. Evolution-proof inhibitors of public good cooperation: a screening strategy inspired by social evolution theory. FEMS Microbiol. Rev. 46, fuac024 (2022).


    Google Scholar
     

  • Rezzoagli, C., Granato, E. & Kümmerli, R. Harnessing bacterial interactions to manage infections: a review on the opportunistic pathogen Pseudomonas aeruginosa as a case example. J. Med. Microbiol. 69, 147–161 (2020).

    CAS 
    PubMed 

    Google Scholar
     

  • Andersen, S., Shapiro, B., Vandenbroucke-Grauls, C. & de Vos, M. Microbial evolutionary medicine: from theory to clinical practice. Lancet Infect. Dis. 19, e273–e283 (2019).

    PubMed 

    Google Scholar
     

  • García-Contreras, R. & Loarca, D. The bright side of social cheaters: potential beneficial roles of ‘social cheaters’ in microbial communities. FEMS Microbiol. Ecol. 97, fiaa214 (2021).


    Google Scholar
     

  • Diggle, S. P., Griffin, A. S., Campbell, G. S. & West, S. A. Cooperation and conflict in quorum-sensing bacterial populations. Nature 450, 411–414 (2007).

    CAS 
    PubMed 

    Google Scholar
     

  • Griffin, A., West, S. & Buckling, A. Cooperation and competition in pathogenic bacteria. Nature 430, 1024–1027 (2004).

    CAS 
    PubMed 

    Google Scholar
     

  • André, J. & Godelle, B. Multicellular organization in bacteria as a target for drug therapy. Ecol. Lett. 8, 800–810 (2005).


    Google Scholar
     

  • Darch, S. E., West, S. A., Winzer, K. & Diggle, S. P. Density-dependent fitness benefits in quorum-sensing bacterial populations. Proc. Natl. Acad. Sci. USA 109, 8259–8263 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rasko, D. A. & Sperandio, V. Anti-virulence strategies to combat bacteria-mediated disease. Nat. Rev. Drug Discov. 9, 117–128 (2010).

    CAS 
    PubMed 

    Google Scholar
     

  • Martinez, O. F., Cardoso, M. H., Ribeiro, S. M. & Franco, O. L. Recent advances in anti-virulence therapeutic strategies. Front. Cell. Infect. Microbiol. 9, 34 (2019).


    Google Scholar
     

  • West, S. A., Diggle, S. P., Buckling, A., Gardner, A. & Griffin, A. S. The social lives of microbes. Annu. Rev. Ecol. Evol. Syst. 38, 53–77 (2007).


    Google Scholar
     

  • West, S. A., Griffin, A. S. & Gardner, A. Social semantics: altruism, cooperation, mutualism, strong reciprocity and group selection. J. Evol. Biol. 20, 415–432 (2007).

    CAS 
    PubMed 

    Google Scholar
     

  • Sorg, R. A. et al. Collective resistance in microbial communities by intracellular antibiotic deactivation. PLoS Biol 14, e2000631 (2016).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Köhler, T., Buckling, A. & Van Delden, C. Cooperation and virulence of clinical Pseudomonas aeruginosa populations. Proc. Natl. Acad. Sci. USA 106, 6339–6344 (2009).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Andersen, S. B., Marvig, R. L., Molin, S., Johansen, H. K. & Griffin, A. S. Long-term social dynamics drive loss of function in pathogenic bacteria. Proc. Natl. Acad. Sci. USA 112, 10756–10761 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wall, D. Kin recognition in bacteria. Annu. Rev. Microbiol. 70, 143–160 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Andersen, S. B. et al. Privatisation rescues function following loss of cooperation. eLife 7, e38594 (2018).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kümmerli, R. et al. Co-evolutionary dynamics between public good producers and cheats in the bacterium Pseudomonas aeruginosa. J. Evol. Biol 28, 2264–2274 (2015).

    PubMed 

    Google Scholar
     

  • West, S. & Buckling, A. Cooperation, virulence and siderophore production in bacterial parasites. Proc. R. Soc. B 270, 37–44 (2003).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dieltjens, L. et al. Inhibiting bacterial cooperation is an evolutionarily robust anti-biofilm strategy. Nat. Commun. 11, 1–10 (2020).


    Google Scholar
     

  • Harrison, F., Browning, L. E., Vos, M. & Buckling, A. Cooperation and virulence in acute Pseudomonas aeruginosa infections. BMC Biol 4, 21 (2006).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • González, J. et al. Loss of a pyoverdine secondary receptor in Pseudomonas aeruginosa results in a fitter strain suitable for population invasion. ISME J. 15, 1330–1343 (2021).

    PubMed 

    Google Scholar
     

  • Rezzoagli, C., Granato, E. T. & Kümmerli, R. In-vivo microscopy reveals the impact of Pseudomonas aeruginosa social interactions on host colonization. ISME J. 13, 2403–2414 (2019).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Waldetoft, K. W. & Brown, S. P. Alternative therapeutics for self-limiting infections – an indirect approach to the antibiotic resistance challenge. PLoS Biol. 15, e2001356 (2017).


    Google Scholar
     

  • Ross-Gillespie, A., Gardner, A., Buckling, A., West, S. A. & Griffin, A. S. Density dependence and cooperation: theory and a test with bacteria. Evolution 63, 2315–2325 (2009).

    PubMed 

    Google Scholar
     

  • Ross-Gillespie, A., Gardner, A., West, S. A. & Griffin, A. S. Frequency dependence and cooperation: theory and a test with bacteria. Am. Nat. 170, 331–342 (2007).

    PubMed 

    Google Scholar
     

  • Kümmerli, R., Griffin, A. S., West, S. A., Buckling, A. & Harrison, F. Viscous medium promotes cooperation in the pathogenic bacterium Pseudomonas aeruginosa. Proc. R. Soc. B 276, 3531–3538 (2009).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kümmerli, R. & Brown, S. P. Molecular and regulatory properties of a public good shape the evolution of cooperation. Proc. Natl. Acad. Sci. USA 107, 18921–18926 (2010).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jiricny, N. et al. Fitness correlates with the extent of cheating in a bacterium. J. Evol. Biol. 23, 738–747 (2010).

    CAS 
    PubMed 

    Google Scholar
     

  • Ghoul, M. et al. Pyoverdin cheats fail to invade bacterial populations in stationary phase. J. Evol. Biol. 29, 1728–1736 (2016).

    CAS 
    PubMed 

    Google Scholar
     

  • Harrison, F., McNally, A., da Silva, A., Heeb, S. & Diggle, S. Optimised chronic infection models demonstrate that siderophore ‘cheating’ in Pseudomonas aeruginosa is context specific. ISME J. 11, 2492–2509 (2017).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mutlu, A., Vanderpool, E. J., Rumbaugh, K. P., Diggle, S. P. & Griffin, A. S. Exploiting cooperative pathogen behaviour for enhanced antibiotic potency: a Trojan horse approach. Microbiology 170, 1–9 (2024).


    Google Scholar
     

  • Granato, E. T., Ziegenhain, C., Marvig, R. L. & Kümmerli, R. Low spatial structure and selection against secreted virulence factors attenuates pathogenicity in Pseudomonas aeruginosa. Nat. Commun. 12, 2907–2918 (2018).

    CAS 

    Google Scholar
     

  • Edwards, R. & Harding, K. G. Bacteria and wound healing. Curr. Opin. Infect. Dis. 17, 91–99 (2004).

    PubMed 

    Google Scholar
     

  • Friesen, M. L. Social evolution and cheating in plant pathogens. Annu. Rev. Phytopathol. 58, 55–75 (2020).

    CAS 
    PubMed 

    Google Scholar
     

  • Huang, A. S. & Baltimore, D. Defective viral particles and viral disease processes. Nature 226, 325–337 (1970).

    CAS 
    PubMed 

    Google Scholar
     

  • Ghoul, M., Griffin, A. S. & West, S. A. Toward an evolutionary definition of cheating. Evolution 68, 318–331 (2014).

    PubMed 

    Google Scholar
     

  • Vignuzzi, M. & López, C. B. Defective viral genomes are key drivers of the virus–host interaction. Nat. Microbiol. 1, 1–9 (2019).


    Google Scholar
     

  • von Magnus, P. Studies on interference in experimental influenza. Almqvist Wiksell 1, 120 (1947).


    Google Scholar
     

  • Pitchai, F. N. N. et al. Engineered deletions of HIV replicate conditionally to reduce disease in nonhuman primates. Science 385, eadn5866 (2024).

    CAS 
    PubMed 

    Google Scholar
     

  • Rezelj, V. V. et al. Defective viral genomes as therapeutic interfering particles against flavivirus infection in mammalian and mosquito hosts. Nat. Commun. 12, 2290 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Walter, M. et al. Viral gene drive spread during herpes simplex virus 1 infection in mice. Nat. Commun. 15, 8161 (2024).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Walter, M. & Verdin, E. Viral gene drive in herpesviruses. Nat. Commun. 11, 4884 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tanner, E. J. et al. Dominant drug targets suppress the emergence of antiviral resistance. eLife 3, e03830 (2014).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tanner, E. J., Kirkegaard, K. A. & Weinberger, L. S. Exploiting genetic interference for antiviral therapy. PLoS Genet. 12, e1005986 (2016).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Amato, K. A. et al. Influenza A virus undergoes compartmentalized replication in vivo dominated by stochastic bottlenecks. Nat. Commun. 13, 3416 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gutiérrez, S. et al. The multiplicity of cellular infection changes depending on the route of cell infection in a plant virus. J. Virol. 89, 9665–9675 (2015).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zwart, M. P. & Elena, S. F. Matters of size: genetic bottlenecks in virus infection and their potential impact on evolution. Annu. Rev. Virol. 2, 161–179 (2015).

    CAS 
    PubMed 

    Google Scholar
     

  • Shirogane, Y. et al. Experimental and mathematical insights on the interactions between poliovirus and a defective interfering genome. PLoS Pathog. 17, e1009277 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Manzoni, T. B. & López, C. B. Defective (interfering) viral genomes re-explored: impact on antiviral immunity and virus persistence. Future Virol 13, 1–9 (2018).


    Google Scholar
     

  • Levi, L. I. et al. Defective viral genomes from chikungunya virus are broad-spectrum antivirals and prevent virus dissemination in mosquitoes. PLoS Pathog. 17, e1009110 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kupke, S. Y., Riedel, D., Frensing, T., Zmora, P. & Reichl, U. A novel type of influenza A virus-derived defective interfering particle with nucleotide substitutions in its genome. J. Virol. 93, https://doi.org/10.1128/jvi.01786-18 (2019).

  • Leeks, A. et al. Open questions in the social lives of viruses. J. Evol. Biol. 36, 1551–1567 (2023).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • DePolo, N., Giachetti & Holland, J. Continuing coevolution of virus and defective interfering particles and of viral genome sequences during undiluted passages: virus mutants exhibiting nearly complete resistance to formerly dominant defective interfering particles. J. Virol. 61, 454–464 (1987).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Horiuchi, K. Co-evolution of a filamentous bacteriophage and its defective interfering particles. J. Mol. Biol. 169, 389–407 (1983).

    CAS 
    PubMed 

    Google Scholar
     

  • Poirier, E. Z. et al. Dicer-2-dependent generation of viral DNA from defective genomes of RNA viruses modulates antiviral immunity in insects. Cell Host Microbe 23, 353–365.e8 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Metzger, V. T., Lloyd-Smith, J. O. & Weinberger, L. S. Autonomous targeting of infectious superspreaders using engineered transmissible therapies. PLoS Comput. Biol. 7, e1002015 (2011).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ke, R. & Lloyd-Smith, J. O. Evolutionary analysis of human immunodeficiency virus type 1 therapies based on conditionally replicating vectors. PLoS Comput. Biol. 8, e1002744 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rüdiger, D., Pelz, L., Hein, M. D., Kupke, S. Y. & Reichl, U. Multiscale model of defective interfering particle replication for influenza A virus infection in animal cell culture. PLoS Comput. Biol. 17, e1009357 (2021).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rouzine, I. M. & Weinberger, L. S. Design requirements for interfering particles to maintain coadaptive stability with HIV-1. J. Virol. 87, 2081–2093 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Felt, S. A. et al. Detection of respiratory syncytial virus defective genomes in nasal secretions is associated with distinct clinical outcomes. Nat. Microbiol. 6, 1–10 (2021).


    Google Scholar
     

  • Martin, M. A., Berg, N. & Koelle, K. Influenza A genomic diversity during human infections underscores the strength of genetic drift and the existence of tight transmission bottlenecks. Virus Evol. 10, veae042 (2024).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Vasilijevic, J. et al. Reduced accumulation of defective viral genomes contributes to severe outcome in influenza virus infected patients. PLoS Pathog. 13, e1006650 (2017).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Welch, S. R. et al. Defective interfering viral particle treatment reduces clinical signs and protects hamsters from lethal Nipah virus disease. mBio 13, e03294-21 (2022).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chaturvedi, S. et al. Identification of a therapeutic interfering particle – a single-administration SARS-CoV-2 antiviral intervention with a high barrier to resistance. Cell 0, 1–10 (2021).


    Google Scholar
     

  • Noble, S. & Dimmock, N. J. Defective interfering type A equine influenza virus (H3N8) protects mice from morbidity and mortality caused by homologous and heterologous subtypes of influenza A virus. J. Gen. Virol. 75, 3485–3491 (1994).

    CAS 
    PubMed 

    Google Scholar
     

  • Source link

    Get RawNews Daily

    Stay informed with our RawNews daily newsletter email

    Exploiting social traits for clinical applications in bacteria and viruses

    Stroke risk higher for at least a decade after minor stroke-like attacks, study indicates

    FPIs Are Back: ₹32,000 Cr Pours Into Indian Stocks in Just Six Days

    Guardiola admits he and his players do not deserve a bonus this season