Denning, D. W. Global incidence and mortality of severe fungal disease. Lancet Infect Dis. 24, e428–e438 (2024).
Wang, L. R., Barber, C. E., Johnson, A. S. & Barnabe, C. Invasive fungal disease in systemic lupus erythematosus: a systematic review of disease characteristics, risk factors, and prognosis. Semin. Arthritis. Rheum. 44, 325–330 (2014).
Brown, G. D. Hidden killers: human fungal infections. Sci. Transl. Med. 4, 165rv13 (2012).
Speed, B. & Dunt, D. Clinical and host differences between infections with the two varieties of Cryptococcus neoformans. Clin. Infect. Dis. 21, 28–34 (1995).
Montoya, M. C., Magwene, P. M. & Perfect, J. R. Associations between Cryptococcus Genotypes, Phenotypes, and Clinical Parameters of Human Disease: A Review. J. Fungi 7, 260 (2021).
Kidd, S. E. et al. A rare genotype of Cryptococcus gattii caused the cryptococcosis outbreak on Vancouver Island (British Columbia, Canada). Proc. Natl. Acad. Sci. USA 101, 17258–17263 (2004).
Byrnes, E. J. 3rd, Bildfell, R. J., Dearing, P. L., Valentine, B. A. & Heitman, J. Cryptococcus gattii with bimorphic colony types in a dog in western Oregon: additional evidence for expansion of the Vancouver Island outbreak. J. Vet. Diagn. Invest 21, 133–136 (2009).
Datta, K. et al. Spread of Cryptococcus gattii into Pacific Northwest region of the United States. Emerg. Infect. Dis. 15, 1185–1191 (2009).
Hoang, L. M. N., Maguire, J. A., Doyle, P., Fyfe, M. & Roscoe, D. L. Cryptococcus neoformans infections at Vancouver Hospital and Health Sciences Centre (1997-2002): epidemiology, microbiology and histopathology. J. Med. Microbiol. 53, 935–940 (2004).
WHO Fungal Priority Pathogens List to Guide Research, Development and Public Health Action (World Health Organization, 2022).
Rajasingham, R. The global burden of HIV-associated cryptococcal infection in adults in 2020: a modelling analysis. Lancet Infect. Dis. 22, 1748–1755 (2022).
Ecology of Cryptococcus neoformans. In: Cryptococcus neoformans 41–70 (John Wiley & Sons, Ltd). https://doi.org/10.1128/9781555818241.ch3 (1998).
Lin, X. & Heitman, J. The biology of the Cryptococcus neoformans species complex. Annu. Rev. Microbiol. 60, 69–105 (2006).
Goldman, D. L. et al. Serologic evidence for Cryptococcus neoformans infection in early childhood. Pediatrics 107, E66 (2001).
Bailly, M. P. et al. Persistence of Cryptococcus neoformans in the prostate: failure of fluconazole despite high doses. J. Infect. Dis. 164, 435–436 (1991).
Barber, B. A., Crotty, J. M., Washburn, R. G. & Pegram, P. S. Cryptococcus neoformans myositis in a patient with AIDS. Clin. Infect. Dis. 21, 1510–1511 (1995).
Ghigliotti, G. & De Marchi, R. Cutaneous involvement with Cryptococcus neoformans in AIDS. J. Am. Acad. Dermatol 32, 820–821 (1995).
Seaton, R. A., Verma, N., Naraqi, S., Wembri, J. P. & Warrell, D. A. Visual loss in immunocompetent patients with Cryptococcus neoformans var. gattii meningitis. Trans. R. Soc. Trop. Med. Hyg. 91, 44–49 (1997).
Sobel, J. D. & Vazquez, J. A. Fungal infections of the urinary tract. World J. Urol. 17, 410–414 (1999).
Chang, Y. C. et al. Cryptococcal yeast cells invade the central nervous system via transcellular penetration of the blood-brain barrier. Infect. Immun. 72, 4985–4995 (2004).
Stott, K. E. et al. Cryptococcal meningoencephalitis: time for action. Lancet Infect. Dis. 21, e259–e271 (2021).
Romo, J. A. & Kumamoto, C. A. On Commensalism of Candida. J. Fungi 6, 16 (2020).
Kumamoto, C. A., Gresnigt, M. S. & Hube, B. The gut, the bad and the harmless: Candida albicans as a commensal and opportunistic pathogen in the intestine. Curr. Opin. Microbiol. 56, 7–15 (2020).
Pfaller, M. A., Diekema, D. J., Turnidge, J. D., Castanheira, M. & Jones, R. N. Twenty years of the SENTRY antifungal surveillance program: results for Candida species from 1997–2016. Open. Forum. Infect. Dis. 6, S79–S94 (2019).
Wisplinghoff, H. et al. Nosocomial bloodstream infections in US hospitals: analysis of 24,179 cases from a prospective nationwide surveillance study. Clin. Infect. Dis. 39, 309–317 (2004).
Casadevall, A. Fungi and the rise of mammals. PLoS Pathog. 8, e1002808 (2012).
Casadevall, A. Global warming could drive the emergence of new fungal pathogens. Nat. Microbiol. 8, 2217–2219 (2023).
Nnadi, N. E. & Carter, D. A. Climate change and the emergence of fungal pathogens. PLoS Pathog. 17, e1009503 (2021).
Seidel, D. et al. Impact of climate change and natural disasters on fungal infections. Lancet Microbe S2666-S5247, https://doi.org/10.1016/S2666-5247(24)00039-9 (2024).
Casadevall, A., Kontoyiannis, D. P. & Robert, V. Environmental Candida auris and the Global Warming Emergence Hypothesis. mBio 12, e00360–21 (2021).
Casadevall, A., Kontoyiannis, D. P. & Robert, V. On the Emergence of Candida auris: Climate Change, Azoles, Swamps, and Birds. mBio 10, e01397–19 (2019).
Lockhart, S. R. et al. Simultaneous Emergence of Multidrug-Resistant Candida auris on 3 Continents Confirmed by Whole-Genome Sequencing and Epidemiological Analyses. Clin. Infect. Dis. 64, 134–140 (2017).
Anderson, T. M. Amphotericin forms an extramembranous and fungicidal sterol sponge. Nat. Chem. Biol. 10, 400–406 (2014).
Fanos, V. & Cataldi, L. Amphotericin B-induced nephrotoxicity: a review. J. Chemother. 12, 463–470 (2000).
Ostrosky-Zeichner, L., Casadevall, A., Galgiani, J. N., Odds, F. C. & Rex, J. H. An insight into the antifungal pipeline: selected new molecules and beyond. Nat. Rev. Drug Discov. 9, 719–727 (2010).
Ostrosky-Zeichner, L., Marr, K. A., Rex, J. H. & Cohen, S. H. Amphotericin B: time for a new ‘gold standard’. Clin. Infect. Dis. 37, 415–425 (2003).
Zavrel, M., Esquivel, B. D. & White, T. C. The Ins and Outs of Azole Antifungal Drug Resistance: Molecular Mechanisms of Transport. In: Handbook of Antimicrobial Resistance (eds. Berghuis, A., Matlashewski, G., Wainberg, M. A., Sheppard, D. & Gotte, M.) 423–452 (Springer New York, 2017). https://doi.org/10.1007/978-1-4939-0694-9_29.
Taft, C. S., Stark, T. & Selitrennikoff, C. P. Cilofungin (LY121019) inhibits Candida albicans (1-3)-beta-D-glucan synthase activity. Antimicrob. Agents Chemother. 32, 1901–1903 (1988).
Kurtz, M. B. et al. Morphological effects of lipopeptides against Aspergillus fumigatus correlate with activities against (1,3)-beta-D-glucan synthase. Antimicrob. Agents Chemother. 38, 1480–1489 (1994).
Pappas, P. G. et al. Executive Summary: Clinical Practice Guideline for the Management of Candidiasis: 2016 Update by the Infectious Diseases Society of America. Clin. Infect. Dis. 62, 409–417 (2016).
Perfect, J. R., et al. Editorial: Antifungal Pipeline: Build It Strong; Build It Better!. Front. Cell Infect. Microbiol. 12, 881272 (2022).
LeBlanc, E. V., Polvi, E. J., Veri, A. O., Privé, G. G. & Cowen, L. E. Structure-guided approaches to targeting stress responses in human fungal pathogens. J. Biol. Chem. 295, 14458–14472 (2020).
Thammahong, A., Puttikamonkul, S., Perfect, J. R., Brennan, R. G. & Cramer, R. A. Central Role of the Trehalose Biosynthesis Pathway in the Pathogenesis of Human Fungal Infections: Opportunities and Challenges for Therapeutic Development. Microbiol. Mol. Biol. Rev. 81, e00053–16 (2017).
Gancedo, C. & Flores, C. -L. The importance of a functional trehalose biosynthetic pathway for the life of yeasts and fungi. FEMS Yeast Res. 4, 351–359 (2004).
Washington, E. J. et al. Structures of trehalose-6-phosphate synthase, Tps1, from the fungal pathogen Cryptococcus neoformans: A target for antifungals. Proc. Natl. Acad. Sci. USA 121, e2314087121 (2024).
Chen, X. et al. Trehalose Phosphate Synthase Complex-Mediated Regulation of Trehalose 6-Phosphate Homeostasis Is Critical for Development and Pathogenesis in Magnaporthe oryzae. mSystems 6, e0046221 (2021).
Miao, Y. et al. Structural and In Vivo Studies on Trehalose-6-Phosphate Synthase from Pathogenic Fungi Provide Insights into Its Catalytic Mechanism, Biological Necessity, and Potential for Novel Antifungal Drug Design. mBio 8, e00643–17 (2017).
Miao, Y. et al. Structures of trehalose-6-phosphate phosphatase from pathogenic fungi reveal the mechanisms of substrate recognition and catalysis. Proc. Natl. Acad. Sci. USA 113, 7148–7153 (2016).
Vuorio, O. E., Kalkkinen, N. & Londesborough, J. Cloning of two related genes encoding the 56-kDa and 123-kDa subunits of trehalose synthase from the yeast Saccharomyces cerevisiae. Eur. J. Biochem. 216, 849–861 (1993).
Ferreira, J. C., Silva, J. T. & Panek, A. D. A regulatory role for TSL1 on trehalose synthase activity. Biochem. Mol. Biol. Int. 38, 259–265 (1996).
Reinders, A. et al. Structural analysis of the subunits of the trehalose-6-phosphate synthase/phosphatase complex in Saccharomyces cerevisiae and their function during heat shock. Mol. Microbiol. 24, 687–695 (1997).
Trevisol, E. T. V., Panek, A. D., De Mesquita, J. F. & Eleutherio, E. C. A. Regulation of the yeast trehalose-synthase complex by cyclic AMP-dependent phosphorylation. Biochim. Biophys. Acta 1840, 1646–1650 (2014).
Cao, Y. et al. Trehalose is an important mediator of Cap1p oxidative stress response in Candida albicans. Biol. Pharm. Bull. 31, 421–425 (2008).
Svanström, Å., van Leeuwen, M. R., Dijksterhuis, J. & Melin, P. Trehalose synthesis in Aspergillus niger: characterization of six homologous genes, all with conserved orthologs in related species. BMC Microbiol. 14, 90 (2014).
Meikle, A. J., Chudek, J. A., Reed, R. H. & Gadd, G. M. Natural abundance 13C-nuclear magnetic resonance spectroscopic analysis of acyclic polyol and trehalose accumulation by several yeast species in response to salt stress. FEMS Microbiol. Lett. 66, 163–167 (1991).
Crowe, J. H., Crowe, L. M. & Chapman, D. Preservation of membranes in anhydrobiotic organisms: the role of trehalose. Science 223, 701–703 (1984).
Elliott, B., Haltiwanger, R. S. & Futcher, B. Synergy between trehalose and Hsp104 for thermotolerance in Saccharomyces cerevisiae. Genetics 144, 923–933 (1996).
Singer, M. A. & Lindquist, S. Thermotolerance in Saccharomyces cerevisiae: the Yin and Yang of trehalose. Trends Biotechnol. 16, 460–468 (1998).
Tapia, H., Young, L., Fox, D., Bertozzi, C. R. & Koshland, D. Increasing intracellular trehalose is sufficient to confer desiccation tolerance to Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA 112, 6122–6127 (2015).
Vanherp, L. et al. Trehalose as quantitative biomarker for in vivo diagnosis and treatment follow-up in cryptococcomas. Transl. Res. 230, 111–122 (2021).
Himmelreich, U. et al. Cryptococcomas distinguished from gliomas with MR spectroscopy: an experimental rat and cell culture study. Radiology 220, 122–128 (2001).
Steen, B. R. et al. Cryptococcus neoformans gene expression during experimental cryptococcal meningitis. Eukaryot. Cell 2, 1336–1349 (2003).
Zaragoza, O., Blazquez, M. A. & Gancedo, C. Disruption of the Candida albicans TPS1 gene encoding trehalose-6-phosphate synthase impairs formation of hyphae and decreases infectivity. J. Bacteriol. 180, 3809–3815 (1998).
Lin, X. & Heitman, J. Chlamydospore formation during hyphal growth in Cryptococcus neoformans. Eukaryot. Cell 4, 1746–1754 (2005).
Ngamskulrungroj, P. et al. The trehalose synthesis pathway is an integral part of the virulence composite for Cryptococcus gattii. Infect. Immun. 77, 4584–4596 (2009).
Petzold, E. W. et al. Characterization and regulation of the trehalose synthesis pathway and its importance in the pathogenicity of Cryptococcus neoformans. Infect. Immun. 74, 5877–5887 (2006).
Goughenour, K. et al. Cryptococcus neoformans trehalose-6-phosphate synthase (tps1) promotes organ-specific virulence and fungal protection against multiple lines of host defenses. Front. Cell Infect. Microbiol. 14, 1392015 (2024).
Tenor, J. L., Oehlers, S. H., Yang, J. L., Tobin, D. M. & Perfect, J. R. Live Imaging of Host-Parasite Interactions in a Zebrafish Infection Model Reveals Cryptococcal Determinants of Virulence and Central Nervous System Invasion. mBio 6, e01425–01415 (2015).
Chen, A., Vargas-Smith, J., Tapia, H. & Gibney, P. A. Characterizing phenotypic diversity of trehalose biosynthesis mutants in multiple wild strains of Saccharomyces cerevisiae. G3 Bethesda 12, jkac196 (2022).
Martínez-Esparza, M. et al. Role of trehalose-6P phosphatase (TPS2) in stress tolerance and resistance to macrophage killing in Candida albicans. Int. J. Med. Microbiol. 299, 453–464 (2009).
Van Dijck, P., De Rop, L., Szlufcik, K., Van Ael, E. & Thevelein, J. M. Disruption of the Candida albicans TPS2 gene encoding trehalose-6-phosphate phosphatase decreases infectivity without affecting hypha formation. Infect. Immun. 70, 1772–1782 (2002).
Zaragoza, O., de Virgilio, C., Pontón, J. & Gancedo, C. Disruption in Candida albicans of the TPS2 gene encoding trehalose-6-phosphate phosphatase affects cell integrity and decreases infectivity. Microbiology 148, 1281–1290 (2002).
De Virgilio, C. et al. Disruption of TPS2, the gene encoding the 100-kDa subunit of the trehalose-6-phosphate synthase/phosphatase complex in Saccharomyces cerevisiae, causes accumulation of trehalose-6-phosphate and loss of trehalose-6-phosphate phosphatase activity. Eur. J. Biochem. 212, 315–323 (1993).
Wang, S. et al. Crystal structures of Magnaporthe oryzae trehalose-6-phosphate synthase (MoTps1) suggest a model for catalytic process of Tps1. Biochem. J. 476, 3227–3240 (2019).
Mendes, V. et al. Mycobacterial OtsA Structures Unveil Substrate Preference Mechanism and Allosteric Regulation by 2-Oxoglutarate and 2-Phosphoglycerate. mBio 10, e02272–19 (2019).
Klutts, J. S., Yoneda, A., Reilly, M. C., Bose, I. & Doering, T. L. Glycosyltransferases and their products: cryptococcal variations on fungal themes. FEMS Yeast Res. 6, 499–512 (2006).
Breton, C., Snajdrová, L., Jeanneau, C., Koca, J. & Imberty, A. Structures and mechanisms of glycosyltransferases. Glycobiology 16, 29R–37R (2006).
Kuznetsova, E. et al. Functional Diversity of Haloacid Dehalogenase Superfamily Phosphatases from Saccharomyces cerevisiae: Biochemical, Structural, and Evolutionary Insights. J. Biol. Chem. 290, 18678–18698 (2015).
Suthisawat, S., Gourlay, L. J., Bolognesi, M., Boonyuen, U. & Vanaporn, M. Functional and structural analysis of trehalose-6-phosphate phosphatase from Burkholderia pseudomallei: Insights into the catalytic mechanism. Biochem. Biophys. Res. Commun. 523, 979–984 (2020).
Farelli, J. D. et al. Structure of the trehalose-6-phosphate phosphatase from Brugia malayi reveals key design principles for anthelmintic drugs. PLoS Pathog. 10, e1004245 (2014).
Shan, S., Min, H., Liu, T., Jiang, D. & Rao, Z. Structural insight into dephosphorylation by trehalose 6-phosphate phosphatase (OtsB2) from Mycobacterium tuberculosis. FASEB J. 30, 3989–3996 (2016).
Harvey, C. M. et al. Structural Analysis of Binding Determinants of Salmonella typhimurium Trehalose-6-phosphate Phosphatase Using Ground-State Complexes. Biochemistry 59, 3247–3257 (2020).
Burroughs, A. M., Allen, K. N., Dunaway-Mariano, D. & Aravind, L. Evolutionary genomics of the HAD superfamily: understanding the structural adaptations and catalytic diversity in a superfamily of phosphoesterases and allied enzymes. J. Mol. Biol. 361, 1003–1034 (2006).
Spaltmann, F., Blunck, M. & Ziegelbauer, K. Computer-aided target selection-prioritizing targets for antifungal drug discovery. Drug Discov. Today 4, 17–26 (1999).
Perfect, J. R., Tenor, J. L., Miao, Y. & Brennan, R. G. Trehalose pathway as an antifungal target. Virulence 8, 143–149 (2017).
Kern, C. et al. Trehalose-6-phosphate synthase from the cat flea Ctenocephalides felis and Drosophila melanogaster: gene identification, cloning, heterologous functional expression and identification of inhibitors by high throughput screening. Insect Mol. Biol. 21, 456–471 (2012).
Pan, Y. T. & Elbein, A. D. Inhibition of the trehalose-P synthase of mycobacteria by various antibiotics. Arch. Biochem. Biophys. 335, 258–266 (1996).
Cross, M. et al. A suicide inhibitor of nematode trehalose-6-phosphate phosphatases. Sci. Rep. 9, 16165 (2019).
Chen, Y. et al. Dual-Specificity Inhibitor Targets Enzymes of the Trehalose Biosynthesis Pathway. J. Agric. Food Chem. 72, 209–218 (2024).
Marcotte, E. M. et al. Detecting protein function and protein-protein interactions from genome sequences. Science 285, 751–753 (1999).
Enright, A. J., Iliopoulos, I., Kyrpides, N. C. & Ouzounis, C. A. Protein interaction maps for complete genomes based on gene fusion events. Nature 402, 86–90 (1999).
Marcotte, C. J. V. & Marcotte, E. M. Predicting functional linkages from gene fusions with confidence. Appl. Bioinforma. 1, 93–100 (2002).
Yanai, I., Derti, A. & DeLisi, C. Genes linked by fusion events are generally of the same functional category: a systematic analysis of 30 microbial genomes. Proc. Natl. Acad. Sci. USA 98, 7940–7945 (2001).
Bell, W. et al. Composition and functional analysis of the Saccharomyces cerevisiae trehalose synthase complex. J. Biol. Chem. 273, 33311–33319 (1998).
Hino, O. & Kobayashi, T. M. o. u. r. n. i. n. g. D. r. Alfred G. Knudson: the two-hit hypothesis, tumor suppressor genes, and the tuberous sclerosis complex. Cancer Sci. 108, 5–11 (2017).
Neckers, L. et al. Methods to validate Hsp90 inhibitor specificity, to identify off-target effects, and to rethink approaches for further clinical development. Cell Stress Chaperones 23, 467–482 (2018).
Iyer, K. R. An oxindole efflux inhibitor potentiates azoles and impairs virulence in the fungal pathogen Candida auris. Nat. Commun. 11, 6429 (2020).
Robbins, N. & Cowen, L. E. Antifungal discovery. Curr. Opin. Microbiol. 69, 102198 (2022).
Cui, J., Ren, B., Tong, Y., Dai, H. & Zhang, L. Synergistic combinations of antifungals and anti-virulence agents to fight against Candida albicans. Virulence 6, 362–371 (2015).
Al-Bader, N. et al. Role of trehalose biosynthesis in Aspergillus fumigatus development, stress response, and virulence. Infect. Immun. 78, 3007–3018 (2010).
Thammahong, A., Dhingra, S., Bultman, K. M., Kerkaert, J. D. & Cramer, R. A. An Ssd1 Homolog Impacts Trehalose and Chitin Biosynthesis and Contributes to Virulence in Aspergillus fumigatus. mSphere 4, e00244–19 (2019).
Price, M. S. et al. Cryptococcus neoformans requires a functional glycolytic pathway for disease but not persistence in the host. mBio 2, e00103–e00111 (2011).
Blázquez, M. A., Lagunas, R., Gancedo, C. & Gancedo, J. M. Trehalose-6-phosphate, a new regulator of yeast glycolysis that inhibits hexokinases. FEBS Lett. 329, 51–54 (1993).
Magalhães, R. S. S. et al. Hexokinase 2: The preferential target of trehalose-6-phosphate over hexokinase 1. J. Cell Biochem. 123, 1808–1816 (2022).
Thammahong, A., Caffrey-Card, A. K., Dhingra, S., Obar, J. J. & Cramer, R. A. Aspergillus fumigatus Trehalose-Regulatory Subunit Homolog Moonlights To Mediate Cell Wall Homeostasis through Modulation of Chitin Synthase Activity. mBio 8, e00056–17 (2017).
Argüelles, J. -C. Why can’t vertebrates synthesize trehalose?. J. Mol. Evol. 79, 111–116 (2014).
Desjardins, C. A. et al. Population genomics and the evolution of virulence in the fungal pathogen Cryptococcus neoformans. Genome Res. 27, 1207–1219 (2017).
Meng, E. C. et al. UCSF ChimeraX: Tools for structure building and analysis. Protein Sci. 32, e4792 (2023).
Armon, A., Graur, D. & Ben-Tal, N. ConSurf: an algorithmic tool for the identification of functional regions in proteins by surface mapping of phylogenetic information. J. Mol. Biol. 307, 447–463 (2001).
Gibson, R. P., Turkenburg, J. P., Charnock, S. J., Lloyd, R. & Davies, G. J. Insights into trehalose synthesis provided by the structure of the retaining glucosyltransferase OtsA. Chem. Biol. 9, 1337–1346 (2002).
Gibson, R. P., Tarling, C. A., Roberts, S., Withers, S. G. & Davies, G. J. The donor subsite of trehalose-6-phosphate synthase: binary complexes with UDP-glucose and UDP-2-deoxy-2-fluoro-glucose at 2 A resolution. J. Biol. Chem. 279, 1950–1955 (2004).