Stock Ticker
GOOG: $157.72 | INTC: $20.59 | MSFT: $374.39 | EURGBP: $0.85 | BABA: $118.97 | IBM: $245.48 | CSCO: $55.63 | AAPL: $204.60
GOOG: $157.72 | INTC: $20.59 | MSFT: $374.39 | EURGBP: $0.85 | BABA: $118.97 | IBM: $245.48 | CSCO: $55.63 | AAPL: $204.60

Developing the trehalose biosynthesis pathway as an antifungal drug target

  • Denning, D. W. Global incidence and mortality of severe fungal disease. Lancet Infect Dis. 24, e428–e438 (2024).

  • Wang, L. R., Barber, C. E., Johnson, A. S. & Barnabe, C. Invasive fungal disease in systemic lupus erythematosus: a systematic review of disease characteristics, risk factors, and prognosis. Semin. Arthritis. Rheum. 44, 325–330 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Brown, G. D. Hidden killers: human fungal infections. Sci. Transl. Med. 4, 165rv13 (2012).

    Article 
    PubMed 

    Google Scholar
     

  • Speed, B. & Dunt, D. Clinical and host differences between infections with the two varieties of Cryptococcus neoformans. Clin. Infect. Dis. 21, 28–34 (1995).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Montoya, M. C., Magwene, P. M. & Perfect, J. R. Associations between Cryptococcus Genotypes, Phenotypes, and Clinical Parameters of Human Disease: A Review. J. Fungi 7, 260 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Kidd, S. E. et al. A rare genotype of Cryptococcus gattii caused the cryptococcosis outbreak on Vancouver Island (British Columbia, Canada). Proc. Natl. Acad. Sci. USA 101, 17258–17263 (2004).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Byrnes, E. J. 3rd, Bildfell, R. J., Dearing, P. L., Valentine, B. A. & Heitman, J. Cryptococcus gattii with bimorphic colony types in a dog in western Oregon: additional evidence for expansion of the Vancouver Island outbreak. J. Vet. Diagn. Invest 21, 133–136 (2009).

    Article 
    PubMed 

    Google Scholar
     

  • Datta, K. et al. Spread of Cryptococcus gattii into Pacific Northwest region of the United States. Emerg. Infect. Dis. 15, 1185–1191 (2009).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hoang, L. M. N., Maguire, J. A., Doyle, P., Fyfe, M. & Roscoe, D. L. Cryptococcus neoformans infections at Vancouver Hospital and Health Sciences Centre (1997-2002): epidemiology, microbiology and histopathology. J. Med. Microbiol. 53, 935–940 (2004).

    Article 
    PubMed 

    Google Scholar
     

  • WHO Fungal Priority Pathogens List to Guide Research, Development and Public Health Action (World Health Organization, 2022).

  • Rajasingham, R. The global burden of HIV-associated cryptococcal infection in adults in 2020: a modelling analysis. Lancet Infect. Dis. 22, 1748–1755 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ecology of Cryptococcus neoformans. In: Cryptococcus neoformans 41–70 (John Wiley & Sons, Ltd). https://doi.org/10.1128/9781555818241.ch3 (1998).

  • Lin, X. & Heitman, J. The biology of the Cryptococcus neoformans species complex. Annu. Rev. Microbiol. 60, 69–105 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Goldman, D. L. et al. Serologic evidence for Cryptococcus neoformans infection in early childhood. Pediatrics 107, E66 (2001).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bailly, M. P. et al. Persistence of Cryptococcus neoformans in the prostate: failure of fluconazole despite high doses. J. Infect. Dis. 164, 435–436 (1991).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Barber, B. A., Crotty, J. M., Washburn, R. G. & Pegram, P. S. Cryptococcus neoformans myositis in a patient with AIDS. Clin. Infect. Dis. 21, 1510–1511 (1995).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ghigliotti, G. & De Marchi, R. Cutaneous involvement with Cryptococcus neoformans in AIDS. J. Am. Acad. Dermatol 32, 820–821 (1995).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Seaton, R. A., Verma, N., Naraqi, S., Wembri, J. P. & Warrell, D. A. Visual loss in immunocompetent patients with Cryptococcus neoformans var. gattii meningitis. Trans. R. Soc. Trop. Med. Hyg. 91, 44–49 (1997).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sobel, J. D. & Vazquez, J. A. Fungal infections of the urinary tract. World J. Urol. 17, 410–414 (1999).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chang, Y. C. et al. Cryptococcal yeast cells invade the central nervous system via transcellular penetration of the blood-brain barrier. Infect. Immun. 72, 4985–4995 (2004).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Stott, K. E. et al. Cryptococcal meningoencephalitis: time for action. Lancet Infect. Dis. 21, e259–e271 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Romo, J. A. & Kumamoto, C. A. On Commensalism of Candida. J. Fungi 6, 16 (2020).

    Article 

    Google Scholar
     

  • Kumamoto, C. A., Gresnigt, M. S. & Hube, B. The gut, the bad and the harmless: Candida albicans as a commensal and opportunistic pathogen in the intestine. Curr. Opin. Microbiol. 56, 7–15 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pfaller, M. A., Diekema, D. J., Turnidge, J. D., Castanheira, M. & Jones, R. N. Twenty years of the SENTRY antifungal surveillance program: results for Candida species from 1997–2016. Open. Forum. Infect. Dis. 6, S79–S94 (2019).

  • Wisplinghoff, H. et al. Nosocomial bloodstream infections in US hospitals: analysis of 24,179 cases from a prospective nationwide surveillance study. Clin. Infect. Dis. 39, 309–317 (2004).

    Article 
    PubMed 

    Google Scholar
     

  • Casadevall, A. Fungi and the rise of mammals. PLoS Pathog. 8, e1002808 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Casadevall, A. Global warming could drive the emergence of new fungal pathogens. Nat. Microbiol. 8, 2217–2219 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Nnadi, N. E. & Carter, D. A. Climate change and the emergence of fungal pathogens. PLoS Pathog. 17, e1009503 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Seidel, D. et al. Impact of climate change and natural disasters on fungal infections. Lancet Microbe S2666-S5247, https://doi.org/10.1016/S2666-5247(24)00039-9 (2024).

  • Casadevall, A., Kontoyiannis, D. P. & Robert, V. Environmental Candida auris and the Global Warming Emergence Hypothesis. mBio 12, e00360–21 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Casadevall, A., Kontoyiannis, D. P. & Robert, V. On the Emergence of Candida auris: Climate Change, Azoles, Swamps, and Birds. mBio 10, e01397–19 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lockhart, S. R. et al. Simultaneous Emergence of Multidrug-Resistant Candida auris on 3 Continents Confirmed by Whole-Genome Sequencing and Epidemiological Analyses. Clin. Infect. Dis. 64, 134–140 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Anderson, T. M. Amphotericin forms an extramembranous and fungicidal sterol sponge. Nat. Chem. Biol. 10, 400–406 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fanos, V. & Cataldi, L. Amphotericin B-induced nephrotoxicity: a review. J. Chemother. 12, 463–470 (2000).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ostrosky-Zeichner, L., Casadevall, A., Galgiani, J. N., Odds, F. C. & Rex, J. H. An insight into the antifungal pipeline: selected new molecules and beyond. Nat. Rev. Drug Discov. 9, 719–727 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ostrosky-Zeichner, L., Marr, K. A., Rex, J. H. & Cohen, S. H. Amphotericin B: time for a new ‘gold standard’. Clin. Infect. Dis. 37, 415–425 (2003).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zavrel, M., Esquivel, B. D. & White, T. C. The Ins and Outs of Azole Antifungal Drug Resistance: Molecular Mechanisms of Transport. In: Handbook of Antimicrobial Resistance (eds. Berghuis, A., Matlashewski, G., Wainberg, M. A., Sheppard, D. & Gotte, M.) 423–452 (Springer New York, 2017). https://doi.org/10.1007/978-1-4939-0694-9_29.

  • Taft, C. S., Stark, T. & Selitrennikoff, C. P. Cilofungin (LY121019) inhibits Candida albicans (1-3)-beta-D-glucan synthase activity. Antimicrob. Agents Chemother. 32, 1901–1903 (1988).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kurtz, M. B. et al. Morphological effects of lipopeptides against Aspergillus fumigatus correlate with activities against (1,3)-beta-D-glucan synthase. Antimicrob. Agents Chemother. 38, 1480–1489 (1994).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pappas, P. G. et al. Executive Summary: Clinical Practice Guideline for the Management of Candidiasis: 2016 Update by the Infectious Diseases Society of America. Clin. Infect. Dis. 62, 409–417 (2016).

    Article 
    PubMed 

    Google Scholar
     

  • Perfect, J. R., et al. Editorial: Antifungal Pipeline: Build It Strong; Build It Better!. Front. Cell Infect. Microbiol. 12, 881272 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • LeBlanc, E. V., Polvi, E. J., Veri, A. O., Privé, G. G. & Cowen, L. E. Structure-guided approaches to targeting stress responses in human fungal pathogens. J. Biol. Chem. 295, 14458–14472 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Thammahong, A., Puttikamonkul, S., Perfect, J. R., Brennan, R. G. & Cramer, R. A. Central Role of the Trehalose Biosynthesis Pathway in the Pathogenesis of Human Fungal Infections: Opportunities and Challenges for Therapeutic Development. Microbiol. Mol. Biol. Rev. 81, e00053–16 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gancedo, C. & Flores, C. -L. The importance of a functional trehalose biosynthetic pathway for the life of yeasts and fungi. FEMS Yeast Res. 4, 351–359 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Washington, E. J. et al. Structures of trehalose-6-phosphate synthase, Tps1, from the fungal pathogen Cryptococcus neoformans: A target for antifungals. Proc. Natl. Acad. Sci. USA 121, e2314087121 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen, X. et al. Trehalose Phosphate Synthase Complex-Mediated Regulation of Trehalose 6-Phosphate Homeostasis Is Critical for Development and Pathogenesis in Magnaporthe oryzae. mSystems 6, e0046221 (2021).

  • Miao, Y. et al. Structural and In Vivo Studies on Trehalose-6-Phosphate Synthase from Pathogenic Fungi Provide Insights into Its Catalytic Mechanism, Biological Necessity, and Potential for Novel Antifungal Drug Design. mBio 8, e00643–17 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Miao, Y. et al. Structures of trehalose-6-phosphate phosphatase from pathogenic fungi reveal the mechanisms of substrate recognition and catalysis. Proc. Natl. Acad. Sci. USA 113, 7148–7153 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Vuorio, O. E., Kalkkinen, N. & Londesborough, J. Cloning of two related genes encoding the 56-kDa and 123-kDa subunits of trehalose synthase from the yeast Saccharomyces cerevisiae. Eur. J. Biochem. 216, 849–861 (1993).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ferreira, J. C., Silva, J. T. & Panek, A. D. A regulatory role for TSL1 on trehalose synthase activity. Biochem. Mol. Biol. Int. 38, 259–265 (1996).

    CAS 
    PubMed 

    Google Scholar
     

  • Reinders, A. et al. Structural analysis of the subunits of the trehalose-6-phosphate synthase/phosphatase complex in Saccharomyces cerevisiae and their function during heat shock. Mol. Microbiol. 24, 687–695 (1997).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Trevisol, E. T. V., Panek, A. D., De Mesquita, J. F. & Eleutherio, E. C. A. Regulation of the yeast trehalose-synthase complex by cyclic AMP-dependent phosphorylation. Biochim. Biophys. Acta 1840, 1646–1650 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cao, Y. et al. Trehalose is an important mediator of Cap1p oxidative stress response in Candida albicans. Biol. Pharm. Bull. 31, 421–425 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Svanström, Å., van Leeuwen, M. R., Dijksterhuis, J. & Melin, P. Trehalose synthesis in Aspergillus niger: characterization of six homologous genes, all with conserved orthologs in related species. BMC Microbiol. 14, 90 (2014).

  • Meikle, A. J., Chudek, J. A., Reed, R. H. & Gadd, G. M. Natural abundance 13C-nuclear magnetic resonance spectroscopic analysis of acyclic polyol and trehalose accumulation by several yeast species in response to salt stress. FEMS Microbiol. Lett. 66, 163–167 (1991).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Crowe, J. H., Crowe, L. M. & Chapman, D. Preservation of membranes in anhydrobiotic organisms: the role of trehalose. Science 223, 701–703 (1984).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Elliott, B., Haltiwanger, R. S. & Futcher, B. Synergy between trehalose and Hsp104 for thermotolerance in Saccharomyces cerevisiae. Genetics 144, 923–933 (1996).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Singer, M. A. & Lindquist, S. Thermotolerance in Saccharomyces cerevisiae: the Yin and Yang of trehalose. Trends Biotechnol. 16, 460–468 (1998).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tapia, H., Young, L., Fox, D., Bertozzi, C. R. & Koshland, D. Increasing intracellular trehalose is sufficient to confer desiccation tolerance to Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA 112, 6122–6127 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Vanherp, L. et al. Trehalose as quantitative biomarker for in vivo diagnosis and treatment follow-up in cryptococcomas. Transl. Res. 230, 111–122 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Himmelreich, U. et al. Cryptococcomas distinguished from gliomas with MR spectroscopy: an experimental rat and cell culture study. Radiology 220, 122–128 (2001).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Steen, B. R. et al. Cryptococcus neoformans gene expression during experimental cryptococcal meningitis. Eukaryot. Cell 2, 1336–1349 (2003).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zaragoza, O., Blazquez, M. A. & Gancedo, C. Disruption of the Candida albicans TPS1 gene encoding trehalose-6-phosphate synthase impairs formation of hyphae and decreases infectivity. J. Bacteriol. 180, 3809–3815 (1998).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lin, X. & Heitman, J. Chlamydospore formation during hyphal growth in Cryptococcus neoformans. Eukaryot. Cell 4, 1746–1754 (2005).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ngamskulrungroj, P. et al. The trehalose synthesis pathway is an integral part of the virulence composite for Cryptococcus gattii. Infect. Immun. 77, 4584–4596 (2009).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Petzold, E. W. et al. Characterization and regulation of the trehalose synthesis pathway and its importance in the pathogenicity of Cryptococcus neoformans. Infect. Immun. 74, 5877–5887 (2006).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Goughenour, K. et al. Cryptococcus neoformans trehalose-6-phosphate synthase (tps1) promotes organ-specific virulence and fungal protection against multiple lines of host defenses. Front. Cell Infect. Microbiol. 14, 1392015 (2024).

  • Tenor, J. L., Oehlers, S. H., Yang, J. L., Tobin, D. M. & Perfect, J. R. Live Imaging of Host-Parasite Interactions in a Zebrafish Infection Model Reveals Cryptococcal Determinants of Virulence and Central Nervous System Invasion. mBio 6, e01425–01415 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen, A., Vargas-Smith, J., Tapia, H. & Gibney, P. A. Characterizing phenotypic diversity of trehalose biosynthesis mutants in multiple wild strains of Saccharomyces cerevisiae. G3 Bethesda 12, jkac196 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Martínez-Esparza, M. et al. Role of trehalose-6P phosphatase (TPS2) in stress tolerance and resistance to macrophage killing in Candida albicans. Int. J. Med. Microbiol. 299, 453–464 (2009).

    Article 
    PubMed 

    Google Scholar
     

  • Van Dijck, P., De Rop, L., Szlufcik, K., Van Ael, E. & Thevelein, J. M. Disruption of the Candida albicans TPS2 gene encoding trehalose-6-phosphate phosphatase decreases infectivity without affecting hypha formation. Infect. Immun. 70, 1772–1782 (2002).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zaragoza, O., de Virgilio, C., Pontón, J. & Gancedo, C. Disruption in Candida albicans of the TPS2 gene encoding trehalose-6-phosphate phosphatase affects cell integrity and decreases infectivity. Microbiology 148, 1281–1290 (2002).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • De Virgilio, C. et al. Disruption of TPS2, the gene encoding the 100-kDa subunit of the trehalose-6-phosphate synthase/phosphatase complex in Saccharomyces cerevisiae, causes accumulation of trehalose-6-phosphate and loss of trehalose-6-phosphate phosphatase activity. Eur. J. Biochem. 212, 315–323 (1993).

    Article 
    PubMed 

    Google Scholar
     

  • Wang, S. et al. Crystal structures of Magnaporthe oryzae trehalose-6-phosphate synthase (MoTps1) suggest a model for catalytic process of Tps1. Biochem. J. 476, 3227–3240 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mendes, V. et al. Mycobacterial OtsA Structures Unveil Substrate Preference Mechanism and Allosteric Regulation by 2-Oxoglutarate and 2-Phosphoglycerate. mBio 10, e02272–19 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Klutts, J. S., Yoneda, A., Reilly, M. C., Bose, I. & Doering, T. L. Glycosyltransferases and their products: cryptococcal variations on fungal themes. FEMS Yeast Res. 6, 499–512 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Breton, C., Snajdrová, L., Jeanneau, C., Koca, J. & Imberty, A. Structures and mechanisms of glycosyltransferases. Glycobiology 16, 29R–37R (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kuznetsova, E. et al. Functional Diversity of Haloacid Dehalogenase Superfamily Phosphatases from Saccharomyces cerevisiae: Biochemical, Structural, and Evolutionary Insights. J. Biol. Chem. 290, 18678–18698 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Suthisawat, S., Gourlay, L. J., Bolognesi, M., Boonyuen, U. & Vanaporn, M. Functional and structural analysis of trehalose-6-phosphate phosphatase from Burkholderia pseudomallei: Insights into the catalytic mechanism. Biochem. Biophys. Res. Commun. 523, 979–984 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Farelli, J. D. et al. Structure of the trehalose-6-phosphate phosphatase from Brugia malayi reveals key design principles for anthelmintic drugs. PLoS Pathog. 10, e1004245 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shan, S., Min, H., Liu, T., Jiang, D. & Rao, Z. Structural insight into dephosphorylation by trehalose 6-phosphate phosphatase (OtsB2) from Mycobacterium tuberculosis. FASEB J. 30, 3989–3996 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Harvey, C. M. et al. Structural Analysis of Binding Determinants of Salmonella typhimurium Trehalose-6-phosphate Phosphatase Using Ground-State Complexes. Biochemistry 59, 3247–3257 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Burroughs, A. M., Allen, K. N., Dunaway-Mariano, D. & Aravind, L. Evolutionary genomics of the HAD superfamily: understanding the structural adaptations and catalytic diversity in a superfamily of phosphoesterases and allied enzymes. J. Mol. Biol. 361, 1003–1034 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Spaltmann, F., Blunck, M. & Ziegelbauer, K. Computer-aided target selection-prioritizing targets for antifungal drug discovery. Drug Discov. Today 4, 17–26 (1999).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Perfect, J. R., Tenor, J. L., Miao, Y. & Brennan, R. G. Trehalose pathway as an antifungal target. Virulence 8, 143–149 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kern, C. et al. Trehalose-6-phosphate synthase from the cat flea Ctenocephalides felis and Drosophila melanogaster: gene identification, cloning, heterologous functional expression and identification of inhibitors by high throughput screening. Insect Mol. Biol. 21, 456–471 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Pan, Y. T. & Elbein, A. D. Inhibition of the trehalose-P synthase of mycobacteria by various antibiotics. Arch. Biochem. Biophys. 335, 258–266 (1996).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cross, M. et al. A suicide inhibitor of nematode trehalose-6-phosphate phosphatases. Sci. Rep. 9, 16165 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen, Y. et al. Dual-Specificity Inhibitor Targets Enzymes of the Trehalose Biosynthesis Pathway. J. Agric. Food Chem. 72, 209–218 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Marcotte, E. M. et al. Detecting protein function and protein-protein interactions from genome sequences. Science 285, 751–753 (1999).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Enright, A. J., Iliopoulos, I., Kyrpides, N. C. & Ouzounis, C. A. Protein interaction maps for complete genomes based on gene fusion events. Nature 402, 86–90 (1999).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Marcotte, C. J. V. & Marcotte, E. M. Predicting functional linkages from gene fusions with confidence. Appl. Bioinforma. 1, 93–100 (2002).


    Google Scholar
     

  • Yanai, I., Derti, A. & DeLisi, C. Genes linked by fusion events are generally of the same functional category: a systematic analysis of 30 microbial genomes. Proc. Natl. Acad. Sci. USA 98, 7940–7945 (2001).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bell, W. et al. Composition and functional analysis of the Saccharomyces cerevisiae trehalose synthase complex. J. Biol. Chem. 273, 33311–33319 (1998).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hino, O. & Kobayashi, T. M. o. u. r. n. i. n. g. D. r. Alfred G. Knudson: the two-hit hypothesis, tumor suppressor genes, and the tuberous sclerosis complex. Cancer Sci. 108, 5–11 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Neckers, L. et al. Methods to validate Hsp90 inhibitor specificity, to identify off-target effects, and to rethink approaches for further clinical development. Cell Stress Chaperones 23, 467–482 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Iyer, K. R. An oxindole efflux inhibitor potentiates azoles and impairs virulence in the fungal pathogen Candida auris. Nat. Commun. 11, 6429 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Robbins, N. & Cowen, L. E. Antifungal discovery. Curr. Opin. Microbiol. 69, 102198 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cui, J., Ren, B., Tong, Y., Dai, H. & Zhang, L. Synergistic combinations of antifungals and anti-virulence agents to fight against Candida albicans. Virulence 6, 362–371 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Al-Bader, N. et al. Role of trehalose biosynthesis in Aspergillus fumigatus development, stress response, and virulence. Infect. Immun. 78, 3007–3018 (2010).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Thammahong, A., Dhingra, S., Bultman, K. M., Kerkaert, J. D. & Cramer, R. A. An Ssd1 Homolog Impacts Trehalose and Chitin Biosynthesis and Contributes to Virulence in Aspergillus fumigatus. mSphere 4, e00244–19 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Price, M. S. et al. Cryptococcus neoformans requires a functional glycolytic pathway for disease but not persistence in the host. mBio 2, e00103–e00111 (2011).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Blázquez, M. A., Lagunas, R., Gancedo, C. & Gancedo, J. M. Trehalose-6-phosphate, a new regulator of yeast glycolysis that inhibits hexokinases. FEBS Lett. 329, 51–54 (1993).

    Article 
    PubMed 

    Google Scholar
     

  • Magalhães, R. S. S. et al. Hexokinase 2: The preferential target of trehalose-6-phosphate over hexokinase 1. J. Cell Biochem. 123, 1808–1816 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Thammahong, A., Caffrey-Card, A. K., Dhingra, S., Obar, J. J. & Cramer, R. A. Aspergillus fumigatus Trehalose-Regulatory Subunit Homolog Moonlights To Mediate Cell Wall Homeostasis through Modulation of Chitin Synthase Activity. mBio 8, e00056–17 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Argüelles, J. -C. Why can’t vertebrates synthesize trehalose?. J. Mol. Evol. 79, 111–116 (2014).

    Article 
    PubMed 

    Google Scholar
     

  • Desjardins, C. A. et al. Population genomics and the evolution of virulence in the fungal pathogen Cryptococcus neoformans. Genome Res. 27, 1207–1219 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Meng, E. C. et al. UCSF ChimeraX: Tools for structure building and analysis. Protein Sci. 32, e4792 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Armon, A., Graur, D. & Ben-Tal, N. ConSurf: an algorithmic tool for the identification of functional regions in proteins by surface mapping of phylogenetic information. J. Mol. Biol. 307, 447–463 (2001).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gibson, R. P., Turkenburg, J. P., Charnock, S. J., Lloyd, R. & Davies, G. J. Insights into trehalose synthesis provided by the structure of the retaining glucosyltransferase OtsA. Chem. Biol. 9, 1337–1346 (2002).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gibson, R. P., Tarling, C. A., Roberts, S., Withers, S. G. & Davies, G. J. The donor subsite of trehalose-6-phosphate synthase: binary complexes with UDP-glucose and UDP-2-deoxy-2-fluoro-glucose at 2 A resolution. J. Biol. Chem. 279, 1950–1955 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Source link

    Get RawNews Daily

    Stay informed with our RawNews daily newsletter email

    Bears Super Bowl Champ Steve McMichael Dead at 67

    Japan March 2025 Services PPI 3.1% y/y (prior 3.0%)

    Interferon-β treatment restores myeloid function and reverses immunosuppression in sepsis

    Rangers To Select Nick Ahmed, Place Corey Seager On Injured List