Stock Ticker

Detection of Mycobacteria in Arabian camels and antimycobacterial potential of Moringa oleifera

  • Burger, P. A., Ciani, E. & Faye, B. Old World camels in a modern world—A balancing act between conservation and genetic improvement. Anim. Genet. 50(6), 598–612 (2019).

    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Ali, A., Baby, B. & Vijayan, R. From desert to medicine: A review of camel genomics and therapeutic products. Front. Genet. 10, 17 (2019).

    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Gordon, S. V. & Parish, T. Microbe profile: Mycobacterium tuberculosis: Humanity’s deadly microbial foe. Microbiology 164(4), 437–439. https://doi.org/10.1099/mic.0.000601 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Fu, L. M. & Fu-Liu, C. S. Is Mycobacterium tuberculosis a closer relative to Gram-positive or Gram-negative bacterial pathogens?. Tuberculosis 82(2–3), 85–90. https://doi.org/10.1054/tube.2002.0328 (2002).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Ryan, K. J., & Ray, C. G. Mycobacteria. In Sherris Medical Microbiology: An Introduction to Infectious Diseases (4th edn.) 439 (McGraw-Hill, 2004) (ISBN 978-0-83-858529-0).

  • Cudahy, P. & Shenoi, S. V. Diagnostics for pulmonary tuberculosis. Postgrad. Med. J. 92(1086), 187–193. https://doi.org/10.1136/postgradmedj-2015-133278 (2016).

    Article 
    PubMed 

    Google Scholar
     

  • Bernitz, N. et al. Review of diagnostic tests for detection of Mycobacterium bovis infection in South African Wildlife. Front. Vet. Sci. 8, 588697. https://doi.org/10.3389/fvets.2021.588697 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Uwaco, Y. et al. Diagnostic utility of a mycobacterium multiplex PCR detection panel for tuberculosis and nontuberculous mycobacterial infections. Microbiol. Spectr. 11(3), e0516222. https://doi.org/10.1128/spectrum.05162-22 (2023).

    Article 

    Google Scholar
     

  • de la Rua-Domenech, R. Human Mycobacterium bovis infection in the United Kingdom: Incidence, risks, control measures and review of the zoonotic aspects of bovine tuberculosis. Tuberculosis 86, 77–109 (2006).

    PubMed 

    Google Scholar
     

  • Michel, A. L., Müller, B. & van Helden, P. D. Mycobacterium bovis at the animal–human interface: A problem, or not?. Vet. Microbiol. 140, 371–381 (2010).

    PubMed 

    Google Scholar
     

  • Kanipe, C. & Palmer, M. V. Mycobacterium bovis and you: A comprehensive look at the bacteria, its similarities to Mycobacterium tuberculosis, and its relationship with human disease. Tuberculosis 125, 102006 (2020).

    CAS 
    PubMed 

    Google Scholar
     

  • Olea-Popelka, F. et al. Zoonotic tuberculosis in human beings caused by Mycobacterium bovis—A call for action. Lancet Infect. Dis. 17(1), e21–e25 (2017).

    PubMed 

    Google Scholar
     

  • Taye, H. et al. Global prevalence of Mycobacterium bovis infections among human tuberculosis cases: Systematic review and meta-analysis. Zoonoses Public Health 68(7), 704–718. https://doi.org/10.1111/zph.12868 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bespiatykh D, Bespyatykh J, Mokrousov I, Shitikov E. A Comprehensive Map of Mycobacterium tuberculosis Complex Regions of Difference. mSphere. 6(4):e0053521. https://doi.org/10.1128/mSphere.00535-21 (2021).

  • Silva-Pereira, T. T., Soler-Camargo, N. C. & Guimarães, A. M. S. Diversification of gene content in the Mycobacterium tuberculosis complex is determined by phylogenetic and ecological signatures. Microbiol. Spectr. 12(2), e02289-e2323 (2024).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Elnaker, Y. F. et al. Seroprevalence and molecular characterization of Mycobacterium bovis infection in camels (Camelus dromedarius) in the Delta region. Egypt. Vet World 12(8), 1180–1187 (2019).

    PubMed 

    Google Scholar
     

  • Office international de epizootic: Manual for diagnosis of Bovine tuberculosis. https://www.oie.int/en/links/ (2019).

  • Sanger, F. & Coulson, A. R. A rapid method for determining sequences in DNA by primed synthesis with DNA polymerase. J. Mol. Biol. 94, 441–448 (1975).

    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Kulski, J. K. Next-generation sequencing—An overview of the history, tools, and “Omic” applications. In Next Generation Sequencing—Advances, Applications and Challenges 3–60 (Intech, 2016).

  • Kchouk, M., Gibrat, J. & Elloumi, M. Generations of sequencing technologies: From frst to next generation. Biol. Med. 9, 1–8 (2017).

    MATH 

    Google Scholar
     

  • Loman, N. J. et al. High-throughput bacterial genome sequencing: An embarrassment of choice, a world of opportunity. Sci. Appl. Microb. Genom. 14, 238–256. https://doi.org/10.1371/image.pcbi.v01.i07 (2013).

    Article 
    MATH 

    Google Scholar
     

  • Quail, M. A. et al. A tale of three next generation sequencing platforms: Comparison of Ion Torrent, Pacifc Biosciences and Illumina MiSeq sequencers. BMC Genomics 13, 1–13 (2012).

    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Carpi, G. et al. Metagenomic profle of the bacterial communities associated with Ixodes ricinus Ticks. PLoS ONE 6, e25604 (2011).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Walter, K. S., Carpi, G., Evans, B. R. & Caccone, A. Vectors as epidemiological sentinels: Patterns of Within-Tick Borrelia burgdorferi Diversity. PLoS Pathog. 12, 1–18 (2016).


    Google Scholar
     

  • Perveen, N., Muzaffar, S. B., Vijayan, R. & Al-Deeb, M. A. Microbial communities associated with the camel tick, Hyalomma dromedarii: 16S rRNA gene-based analysis. Sci. Rep. 10(1), 17035 (2020).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Goodman, L. & Lahmers, K. Special issue on applied next-generation sequencing in veterinary diagnostic laboratories. J. Vet. Diagn. Invest. 33(2), 177–178. https://doi.org/10.1177/1040638721995676 (2021).

    Article 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Van Borm, S. et al. Next-generation sequencing in veterinary medicine: How can the massive amount of information arising from high-throughput technologies improve diagnosis, control, and management of infectious diseases?. Methods Mol. Biol. 1247, 415–436. https://doi.org/10.1007/978-1-4939-2004-4_30 (2015).

    Article 
    PubMed 

    Google Scholar
     

  • Domrazek, K. & Jurka, P. Application of next-generation sequencing (NGS) techniques for selected companion animals. Animals 14(11), 1578 (2024).

    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Zhang, K. et al. Gut microbial succession patterns and metabolic profiling during pregnancy and lactation in a goat model. Microbiol. Spectr. 11(1), e02955-e3022 (2023).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rabee, A. E. et al. Rumen fermentation and microbiota in Shami goats fed on condensed tannins or herbal mixture. BMC Vet. Res. 20(1), 35. https://doi.org/10.1186/s12917-024-03887-2 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • World Health Organization. WHO Monographs on Selected Medicinal Plants Vol. 2 (World Health Organization, 1999).


    Google Scholar
     

  • Pinzi, L. & Rastelli, G. Molecular docking: Shifting paradigms in drug discovery. Int. J. Mol. Sci. 20(18), 4331. https://doi.org/10.3390/ijms20184331 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Sattar, A., Zakaria, Z., Abu, J., Aziz, S. A. & Gabriel, R.-P. Evaluation of six decontamination procedures for isolation of Mycobacterium avium complex from avian feces. PLoS ONE 13(8), e0202034. https://doi.org/10.1371/journal.pone.0202034 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Quinn, P. J. et al. Veterinary Microbiology and Microbial Disease 2nd edn. (Wiley-Blackwell, Chichester, 2011).


    Google Scholar
     

  • Elseweidy, M. M. et al. Potential therapeutic roles of 10-dehydrogingerdione and/or pentoxifylline against calcium deposition in aortic tissues of high dietary cholesterol-fed rabbits. Mol. Cell Biochem. 453(1–2), 131–142. https://doi.org/10.1007/s11010-018-3438-1 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tevere, V. J. et al. Detection of Mycobacterium tuberculosis by PCR amplification with Pan-Mycobacterium primers and hybridization to an M. tuberculosis-specific probe. J. Clin. Microbiol. 34(4), 918–923 (1996).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang, H. et al. Loop-mediated isothermal amplification assay targeting the mpb70 gene for rapid differential detection of Mycobacterium bovis. Arch. Microbiol. 198(9), 905–911 (2016).

    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Quan, Z. et al. Development of one-tube multiplex polymerase chain reaction (PCR) for detecting Mycobacterium bovis. J. Vet. Med. Sci. 78(12), 1873–1876 (2017).

    PubMed 

    Google Scholar
     

  • Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipmanl, D. J. Basic local alignment search tool. J. Mol. Biol. 215, 403–410 (1990).

    CAS 
    PubMed 

    Google Scholar
     

  • Tamura, K., Stecher, G. & Kumar, S. MEGA11: Molecular evolutionary genetics analysis version 11. Mol. Biol. Evol. 38(7), 3022–3027. https://doi.org/10.1093/molbev/msab120 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Tamura, K. & Nei, M. Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol. Biol. Evol. 10, 512–526 (1993).

    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Felsenstein, J. Confidence limits on phylogenies: An approach using the bootstrap. Evolution 39, 783–791 (1985).

    PubMed 
    MATH 

    Google Scholar
     

  • Allam, S. A., Elnomrosy, S. M. & Mohamed, S. M. Virulent-MDR-ESBL E. coli and Klebsiella pneumoniae report from North Sinai calves diarrhea and in vitro antimicrobial by Moringa oleifera. BMC Vet. Res. 20(1), 259. https://doi.org/10.1186/s12917-024-04088-7 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sankar, M. M., Gopinath, K., Singla, R. & Singh, S. In-vitro antimycobacterial drug susceptibility testing of non-tubercular mycobacteria by tetrazolium microplate assay. Ann. Clin. Microbiol. Antimicrob. 7(1), 1–9 (2008).


    Google Scholar
     

  • Mshana, R. N., Tadesse, G., Aabate, G. & Miörner, H. Use of 3-(4,5-Dimethylthiazol-2-yl)-2, 5-Diphenyl TetrazoliumBromide for rapid detection of rifampin-resistant Mycobacterium tuberculosis. J. Clin. Microbiol. 36(5), 1214–1219 (1998).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kim, J.-S. et al. Crystal structure and functional implications of LprF from Mycobacterium tuberculosis and M. bovis. Acta Crystallogr. Sect. D Biol. Crystallogr. 70(10), 2619–2630 (2014).

    ADS 
    CAS 
    MATH 

    Google Scholar
     

  • Saleh, A. M. et al. Design, synthesis, in silico studies, and biological evaluation of novel pyrimidine-5-carbonitrile derivatives as potential anti-proliferative agents, VEGFR-2 inhibitors and apoptotic inducers. RSC Adv. 13(32), 22122–22147 (2023).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Swaminathan, N., Perloff, S. R. & Zuckerman, J. M. Prevention of Mycobacterium tuberculosis transmission in health care settings. Infect. Dis. Clin. 35(4), 1013–1025 (2021).


    Google Scholar
     

  • World Health Organization. Global Tuberculosis Report (World Health Organization, 2023).


    Google Scholar
     

  • Miggiano, R., Rizzi, M. & Ferraris, D. M. Mycobacterium tuberculosis pathogenesis, infection prevention and treatment. Pathogens 9(5), 385. https://doi.org/10.3390/pathogens9050385 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Biek, R. et al. Whole genome sequencing reveals local transmission patterns of Mycobacterium bovis in sympatric cattle and badger populations. PLoS Pathog. 8(11), e1003008 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kock, R. et al. Zoonotic tuberculosis—The changing landscape. Int. J. Infect. Dis. 113, S68–S72 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Taye, H. et al. Global prevalence of Mycobacterium bovis infections among human tuberculosis cases: Systematic review and meta-analysis. Zoonoses Public Health 68(7), 704–718 (2021).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Borham, M. et al. Review on bovine tuberculosis: An emerging disease associated with multidrug-resistant Mycobacterium Species. Pathogens 11(7), 715 (2022).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wallace, E. et al. Culturing mycobacteria. Methods Mol. Biol. 2314, 1–58 (2021).

    CAS 
    PubMed 

    Google Scholar
     

  • Pfyffer, G. E. & Wittwer, F. Incubation time of mycobacterial cultures: How long is long enough to issue a final negative report to the clinician?. J. Clin. Microbiol. 50(12), 4188–4189 (2012).

    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Riley, L. W. & Blanton, R. E. Advances in molecular epidemiology of infectious diseases: Definitions, approaches, and scope of the field. Microbiol. Spectr. 6(6), 10 (2018).

    PubMed Central 
    MATH 

    Google Scholar
     

  • Chisompola, N. K., Streicher, E. M., Muchemwa, C. M. K., Warren, R. M. & Sampson, S. L. Molecular epidemiology of drug resistant Mycobacterium tuberculosis in Africa: A systematic review. BMC Infect. Dis. 20(1), 344 (2020).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bakuła, Z. et al. Molecular snapshot of drug-resistant Mycobacterium tuberculosis strains from the Plateau State, Nigeria. PLoS ONE 17(5), e0266837 (2022).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bhembe, N. L. et al. Clonality and genetic profiles of drug-resistant Mycobacterium tuberculosis in the Eastern Cape Province, South Africa. Microbiologyopen 8(3), e00449 (2019).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rahman, S. M. M. et al. Molecular epidemiology and genetic diversity of multidrug-resistant Mycobacterium tuberculosis isolates in Bangladesh. Microbiol. Spectr. 10(1), e0184821 (2022).

    PubMed 
    MATH 

    Google Scholar
     

  • Vincent, A. T. et al. The mycobacterial cell envelope: A relict from the past or the result of recent evolution?. Front. Microbiol. 9, 2341 (2018).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kaale, S. E., Machangu, R. S. & Lyimo, T. J. Molecular characterization and phylogenetic diversity of actinomycetota species isolated from Lake Natron sediments at Arusha, Tanzania. Microbiol. Res. 278, 127543 (2024).

    CAS 
    PubMed 

    Google Scholar
     

  • Batt, S. M. et al. The thick waxy coat of mycobacteria, a protective layer against antibiotics and the host’s immune system. Biochem. J. 477(10), 1983–2006 (2020).

    PubMed 
    MATH 

    Google Scholar
     

  • Rito, T., Inlamea, O., Oliveira, O., Duarte, R., Soares, et al. Evolution and molecular characteristics of Mycobacterium tuberculosis and Mycobacterium bovis. In Tuberculosis: Integrated Studies for a Complex Disease 847–865 (Springer, 2023).

  • O’Reilly, L. M. & Daborn, C. J. The epidemiology of Mycobacterium bovis infections in animals and man: A review. Tuber Lung Dis 76, 1–46. https://doi.org/10.1016/0962-8479(95)90591-X (1995).

    Article 
    PubMed 
    MATH 

    Google Scholar
     

  • Inlamea, O. F. et al. Evolutionary analysis of Mycobacterium bovis genotypes across Africa suggests co-evolution with livestock and humans. PLoS Negl. Trop. Dis. 14, e0008081. https://doi.org/10.1371/journal.pntd.0008081 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Loiseau, C. et al. An African origin for Mycobacterium bovis. Evol. Med. Public Health 2020, 49–59. https://doi.org/10.1093/emph/eoaa005 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Al-Shuhaib, M. B. S. & Hashim, H. O. Mastering DNA chromatogram analysis in Sanger sequencing for reliable clinical analysis. J. Genet. Eng. Biotechnol. 21(1), 115 (2023).

    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Kuczynski, J. et al. Experimental and analytical tools for studying the human microbiome. Nat. Rev. Genet. 13(1), 47–58. https://doi.org/10.1038/nrg3129 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Qin, D. Next-generation sequencing and its clinical application. Cancer Biol. Med. 16(1), 4–10 (2019).

    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Palmer, M. V., Wiarda, J., Kanipe, C. & Thacker, T. C. Early pulmonary lesions in cattle infected via aerosolized Mycobacterium bovis. Vet. Pathol. 56(4), 544–554 (2019).

    PubMed 

    Google Scholar
     

  • Mousa, H. L. Tuberculosis of bones and joints: Diagnostic approaches. Int. Orthop. 22, 245–246 (1998).

    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Sankar, M. M., Gopinath, K., Singla, R. & Singh, S. In-vitro antimycobacterial drug susceptibility testing of non-tubercular mycobacteria by tetrazolium microplate assay. Ann. Clin. Microbiol. Antimicrob. 7, 1–9 (2008).


    Google Scholar
     

  • van den Berg, J. & Kuipers, S. The antibacterial action of Moringa oleifera: A systematic review. South Afr. J. Botany 151, 224–233 (2022).

    MATH 

    Google Scholar
     

  • Fouad, E. A., Abu Elnaga, A. S. M. & Kandil, M. M. Antibacterial efficacy of Moringa oleifera leaf extract against pyogenic bacteria isolated from a dromedary camel (Camelus dromedarius) abscess. Vet. World 12(6), 802–808 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Egharevba, H. O., Oladosu, P., Izebe, K. S. & Kunle, O. F. Chemical composition and anti-tubercular activity of the fixed oil of Moringa oleifera seed. J. Chem. Pharm. Res. 7, 412 (2015).

    CAS 

    Google Scholar
     

  • El-Din, N. M. N. Ecophysiological studies on the draught resistance of Moringa oleifera (lam). Egypt. J. Desert Res. 54(1), 141–155 (2004).

    MATH 

    Google Scholar
     

  • Rahim, M. A. et al. Essential components from plant source oils: A review on extraction, detection, identification, and quantification. Molecules 28(19), 6881. https://doi.org/10.3390/molecules28196881 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Abdelghany, A. M. et al. Profiling of seed fatty acid composition in 1025 Chinese soybean accessions from diverse ecoregions. Crop J. 8(4), 635–644 (2020).


    Google Scholar
     

  • Orhan, İ, Özçelik, B. & Şener, B. Evaluation of antibacterial, antifungal, antiviral, and antioxidant potentials of some edible oils and their fatty acid profiles. Turk. J. Biol. 35, 251–258 (2011).

    CAS 
    MATH 

    Google Scholar
     

  • Egharevba, H. O., Oladosu, P., Izebe, K. S. & Kunle, O. F. Chemical composition and anti-tubercular activity of the fixed oil of Moringa oleifera seed. J. Chem. Pharm. Res. 7(12), 412–418 (2015).

    CAS 

    Google Scholar
     

  • Shaltout, F. A. Abattoir and bovine tuberculosis as a reemerging foodborne diseas. Clin. Med. Rev. Rep. 6(1), 1–7 (2024).


    Google Scholar
     

  • Kuria J. K. Diseases caused by bacteria in cattle: Tuberculosis. In Bacterial Cattle Diseases (IntechOpen, 2019).

  • Popa, O., Băbeanu, N. E., Popa, I., Niță, S. & Dinu-Pârvu, C. E. Methods for obtaining and determination of squalene from natural sources. BioMed Res. Int. 2015, 1–16. https://doi.org/10.1155/2015/367202 (2015).

    Article 
    CAS 
    MATH 

    Google Scholar
     

  • Thorbjarnarson, T. & Drummond, J. C. Occurrence of an unsaturated hydrocarbon in olive oil. Analyst 60(706), 23–29 (1935).

    ADS 
    CAS 

    Google Scholar
     

  • Frega, N., Bocci, F. & Lercker, G. Direct gas chromatographic analysis of the unsaponifiable fraction of different oils with a polar capillary column. J. Am. Oil Chem. Soc. 69, 447–450 (1992).

    CAS 

    Google Scholar
     

  • Noro, J. C. et al. Tetrahdroxysqualene from Rhus taitensis shows antimycobacterial activity against Mycobacterium tuberculosis. J. Natl. Prod. 71(9), 1623–1624 (2008).

    CAS 

    Google Scholar
     

  • Reddy, L. H. & Couvreur, P. Squalene: A natural triterpene for use in disease management and therapy. Adv. Drug Deliv. Rev. 61(15), 1412–1426 (2009).

    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Zhi, Y. et al. Lead compounds and key residues of ribosomal protein S1 in drug-resistant Mycobacterium tuberculosis. Bioorg. Chem. 82, 58–67 (2019).

    CAS 
    PubMed 

    Google Scholar
     

  • Dai, Y. et al. Discovery and evaluation of new compounds targeting ribosomal protein S1 in antibiotic-resistant Mycobacterium tuberculosis. Eur. J. Med. Chem. 196, 112317 (2020).

    CAS 
    PubMed 

    Google Scholar
     

  • Hamdy, N. M. Exploring the anti-inflammatory potential of the polyphenolic compounds in Moringa oleifera leaf: In silico molecular docking. Egypt. J. Basic Appl. Sci. 11(1), 367–385 (2024).

    MathSciNet 
    MATH 

    Google Scholar
     

  • Hamdy, N. M. Effect of Moringa oleifera Lam. Leaf extract in treating pneumonia. Egypt. J. Desert Res. 73(2), 423–442 (2023).

    MATH 

    Google Scholar
     

  • Havlicek, J., Murray, A. K., Saxton, T. K. & Roberts, S. C. Current issues in the study of androstenes in human chemosignaling. Vitam. Horm. 83, 47–81 (2010).

    CAS 
    PubMed 

    Google Scholar
     

  • Badawy, M. T., Sobeh, M., Xiao, J. & Farag, M. A. Androstenedione (a Natural Steroid and a Drug Supplement): A comprehensive review of its consumption, metabolism, health effects, and toxicity with sex differences. Molecules 26(20), 6210 (2021).

    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Source link

    Get RawNews Daily

    Stay informed with our RawNews daily newsletter email

    The full text from Fed Chair Powells speech

    Detection of Mycobacteria in Arabian camels and antimycobacterial potential of Moringa oleifera

    How the brain uses context boundaries to guide decision-making in both spatial and abstract environments

    China halts TikTok deal over tariffs: report