Burger, P. A., Ciani, E. & Faye, B. Old World camels in a modern world—A balancing act between conservation and genetic improvement. Anim. Genet. 50(6), 598–612 (2019).
Ali, A., Baby, B. & Vijayan, R. From desert to medicine: A review of camel genomics and therapeutic products. Front. Genet. 10, 17 (2019).
Gordon, S. V. & Parish, T. Microbe profile: Mycobacterium tuberculosis: Humanity’s deadly microbial foe. Microbiology 164(4), 437–439. https://doi.org/10.1099/mic.0.000601 (2018).
Fu, L. M. & Fu-Liu, C. S. Is Mycobacterium tuberculosis a closer relative to Gram-positive or Gram-negative bacterial pathogens?. Tuberculosis 82(2–3), 85–90. https://doi.org/10.1054/tube.2002.0328 (2002).
Ryan, K. J., & Ray, C. G. Mycobacteria. In Sherris Medical Microbiology: An Introduction to Infectious Diseases (4th edn.) 439 (McGraw-Hill, 2004) (ISBN 978-0-83-858529-0).
Cudahy, P. & Shenoi, S. V. Diagnostics for pulmonary tuberculosis. Postgrad. Med. J. 92(1086), 187–193. https://doi.org/10.1136/postgradmedj-2015-133278 (2016).
Bernitz, N. et al. Review of diagnostic tests for detection of Mycobacterium bovis infection in South African Wildlife. Front. Vet. Sci. 8, 588697. https://doi.org/10.3389/fvets.2021.588697 (2021).
Uwaco, Y. et al. Diagnostic utility of a mycobacterium multiplex PCR detection panel for tuberculosis and nontuberculous mycobacterial infections. Microbiol. Spectr. 11(3), e0516222. https://doi.org/10.1128/spectrum.05162-22 (2023).
de la Rua-Domenech, R. Human Mycobacterium bovis infection in the United Kingdom: Incidence, risks, control measures and review of the zoonotic aspects of bovine tuberculosis. Tuberculosis 86, 77–109 (2006).
Michel, A. L., Müller, B. & van Helden, P. D. Mycobacterium bovis at the animal–human interface: A problem, or not?. Vet. Microbiol. 140, 371–381 (2010).
Kanipe, C. & Palmer, M. V. Mycobacterium bovis and you: A comprehensive look at the bacteria, its similarities to Mycobacterium tuberculosis, and its relationship with human disease. Tuberculosis 125, 102006 (2020).
Olea-Popelka, F. et al. Zoonotic tuberculosis in human beings caused by Mycobacterium bovis—A call for action. Lancet Infect. Dis. 17(1), e21–e25 (2017).
Taye, H. et al. Global prevalence of Mycobacterium bovis infections among human tuberculosis cases: Systematic review and meta-analysis. Zoonoses Public Health 68(7), 704–718. https://doi.org/10.1111/zph.12868 (2021).
Bespiatykh D, Bespyatykh J, Mokrousov I, Shitikov E. A Comprehensive Map of Mycobacterium tuberculosis Complex Regions of Difference. mSphere. 6(4):e0053521. https://doi.org/10.1128/mSphere.00535-21 (2021).
Silva-Pereira, T. T., Soler-Camargo, N. C. & Guimarães, A. M. S. Diversification of gene content in the Mycobacterium tuberculosis complex is determined by phylogenetic and ecological signatures. Microbiol. Spectr. 12(2), e02289-e2323 (2024).
Elnaker, Y. F. et al. Seroprevalence and molecular characterization of Mycobacterium bovis infection in camels (Camelus dromedarius) in the Delta region. Egypt. Vet World 12(8), 1180–1187 (2019).
Office international de epizootic: Manual for diagnosis of Bovine tuberculosis. https://www.oie.int/en/links/ (2019).
Sanger, F. & Coulson, A. R. A rapid method for determining sequences in DNA by primed synthesis with DNA polymerase. J. Mol. Biol. 94, 441–448 (1975).
Kulski, J. K. Next-generation sequencing—An overview of the history, tools, and “Omic” applications. In Next Generation Sequencing—Advances, Applications and Challenges 3–60 (Intech, 2016).
Kchouk, M., Gibrat, J. & Elloumi, M. Generations of sequencing technologies: From frst to next generation. Biol. Med. 9, 1–8 (2017).
Loman, N. J. et al. High-throughput bacterial genome sequencing: An embarrassment of choice, a world of opportunity. Sci. Appl. Microb. Genom. 14, 238–256. https://doi.org/10.1371/image.pcbi.v01.i07 (2013).
Quail, M. A. et al. A tale of three next generation sequencing platforms: Comparison of Ion Torrent, Pacifc Biosciences and Illumina MiSeq sequencers. BMC Genomics 13, 1–13 (2012).
Carpi, G. et al. Metagenomic profle of the bacterial communities associated with Ixodes ricinus Ticks. PLoS ONE 6, e25604 (2011).
Walter, K. S., Carpi, G., Evans, B. R. & Caccone, A. Vectors as epidemiological sentinels: Patterns of Within-Tick Borrelia burgdorferi Diversity. PLoS Pathog. 12, 1–18 (2016).
Perveen, N., Muzaffar, S. B., Vijayan, R. & Al-Deeb, M. A. Microbial communities associated with the camel tick, Hyalomma dromedarii: 16S rRNA gene-based analysis. Sci. Rep. 10(1), 17035 (2020).
Goodman, L. & Lahmers, K. Special issue on applied next-generation sequencing in veterinary diagnostic laboratories. J. Vet. Diagn. Invest. 33(2), 177–178. https://doi.org/10.1177/1040638721995676 (2021).
Van Borm, S. et al. Next-generation sequencing in veterinary medicine: How can the massive amount of information arising from high-throughput technologies improve diagnosis, control, and management of infectious diseases?. Methods Mol. Biol. 1247, 415–436. https://doi.org/10.1007/978-1-4939-2004-4_30 (2015).
Domrazek, K. & Jurka, P. Application of next-generation sequencing (NGS) techniques for selected companion animals. Animals 14(11), 1578 (2024).
Zhang, K. et al. Gut microbial succession patterns and metabolic profiling during pregnancy and lactation in a goat model. Microbiol. Spectr. 11(1), e02955-e3022 (2023).
Rabee, A. E. et al. Rumen fermentation and microbiota in Shami goats fed on condensed tannins or herbal mixture. BMC Vet. Res. 20(1), 35. https://doi.org/10.1186/s12917-024-03887-2 (2024).
World Health Organization. WHO Monographs on Selected Medicinal Plants Vol. 2 (World Health Organization, 1999).
Pinzi, L. & Rastelli, G. Molecular docking: Shifting paradigms in drug discovery. Int. J. Mol. Sci. 20(18), 4331. https://doi.org/10.3390/ijms20184331 (2019).
Sattar, A., Zakaria, Z., Abu, J., Aziz, S. A. & Gabriel, R.-P. Evaluation of six decontamination procedures for isolation of Mycobacterium avium complex from avian feces. PLoS ONE 13(8), e0202034. https://doi.org/10.1371/journal.pone.0202034 (2018).
Quinn, P. J. et al. Veterinary Microbiology and Microbial Disease 2nd edn. (Wiley-Blackwell, Chichester, 2011).
Elseweidy, M. M. et al. Potential therapeutic roles of 10-dehydrogingerdione and/or pentoxifylline against calcium deposition in aortic tissues of high dietary cholesterol-fed rabbits. Mol. Cell Biochem. 453(1–2), 131–142. https://doi.org/10.1007/s11010-018-3438-1 (2019).
Tevere, V. J. et al. Detection of Mycobacterium tuberculosis by PCR amplification with Pan-Mycobacterium primers and hybridization to an M. tuberculosis-specific probe. J. Clin. Microbiol. 34(4), 918–923 (1996).
Zhang, H. et al. Loop-mediated isothermal amplification assay targeting the mpb70 gene for rapid differential detection of Mycobacterium bovis. Arch. Microbiol. 198(9), 905–911 (2016).
Quan, Z. et al. Development of one-tube multiplex polymerase chain reaction (PCR) for detecting Mycobacterium bovis. J. Vet. Med. Sci. 78(12), 1873–1876 (2017).
Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipmanl, D. J. Basic local alignment search tool. J. Mol. Biol. 215, 403–410 (1990).
Tamura, K., Stecher, G. & Kumar, S. MEGA11: Molecular evolutionary genetics analysis version 11. Mol. Biol. Evol. 38(7), 3022–3027. https://doi.org/10.1093/molbev/msab120 (2021).
Tamura, K. & Nei, M. Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol. Biol. Evol. 10, 512–526 (1993).
Felsenstein, J. Confidence limits on phylogenies: An approach using the bootstrap. Evolution 39, 783–791 (1985).
Allam, S. A., Elnomrosy, S. M. & Mohamed, S. M. Virulent-MDR-ESBL E. coli and Klebsiella pneumoniae report from North Sinai calves diarrhea and in vitro antimicrobial by Moringa oleifera. BMC Vet. Res. 20(1), 259. https://doi.org/10.1186/s12917-024-04088-7 (2024).
Sankar, M. M., Gopinath, K., Singla, R. & Singh, S. In-vitro antimycobacterial drug susceptibility testing of non-tubercular mycobacteria by tetrazolium microplate assay. Ann. Clin. Microbiol. Antimicrob. 7(1), 1–9 (2008).
Mshana, R. N., Tadesse, G., Aabate, G. & Miörner, H. Use of 3-(4,5-Dimethylthiazol-2-yl)-2, 5-Diphenyl TetrazoliumBromide for rapid detection of rifampin-resistant Mycobacterium tuberculosis. J. Clin. Microbiol. 36(5), 1214–1219 (1998).
Kim, J.-S. et al. Crystal structure and functional implications of LprF from Mycobacterium tuberculosis and M. bovis. Acta Crystallogr. Sect. D Biol. Crystallogr. 70(10), 2619–2630 (2014).
Saleh, A. M. et al. Design, synthesis, in silico studies, and biological evaluation of novel pyrimidine-5-carbonitrile derivatives as potential anti-proliferative agents, VEGFR-2 inhibitors and apoptotic inducers. RSC Adv. 13(32), 22122–22147 (2023).
Swaminathan, N., Perloff, S. R. & Zuckerman, J. M. Prevention of Mycobacterium tuberculosis transmission in health care settings. Infect. Dis. Clin. 35(4), 1013–1025 (2021).
World Health Organization. Global Tuberculosis Report (World Health Organization, 2023).
Miggiano, R., Rizzi, M. & Ferraris, D. M. Mycobacterium tuberculosis pathogenesis, infection prevention and treatment. Pathogens 9(5), 385. https://doi.org/10.3390/pathogens9050385 (2020).
Biek, R. et al. Whole genome sequencing reveals local transmission patterns of Mycobacterium bovis in sympatric cattle and badger populations. PLoS Pathog. 8(11), e1003008 (2012).
Kock, R. et al. Zoonotic tuberculosis—The changing landscape. Int. J. Infect. Dis. 113, S68–S72 (2021).
Taye, H. et al. Global prevalence of Mycobacterium bovis infections among human tuberculosis cases: Systematic review and meta-analysis. Zoonoses Public Health 68(7), 704–718 (2021).
Borham, M. et al. Review on bovine tuberculosis: An emerging disease associated with multidrug-resistant Mycobacterium Species. Pathogens 11(7), 715 (2022).
Wallace, E. et al. Culturing mycobacteria. Methods Mol. Biol. 2314, 1–58 (2021).
Pfyffer, G. E. & Wittwer, F. Incubation time of mycobacterial cultures: How long is long enough to issue a final negative report to the clinician?. J. Clin. Microbiol. 50(12), 4188–4189 (2012).
Riley, L. W. & Blanton, R. E. Advances in molecular epidemiology of infectious diseases: Definitions, approaches, and scope of the field. Microbiol. Spectr. 6(6), 10 (2018).
Chisompola, N. K., Streicher, E. M., Muchemwa, C. M. K., Warren, R. M. & Sampson, S. L. Molecular epidemiology of drug resistant Mycobacterium tuberculosis in Africa: A systematic review. BMC Infect. Dis. 20(1), 344 (2020).
Bakuła, Z. et al. Molecular snapshot of drug-resistant Mycobacterium tuberculosis strains from the Plateau State, Nigeria. PLoS ONE 17(5), e0266837 (2022).
Bhembe, N. L. et al. Clonality and genetic profiles of drug-resistant Mycobacterium tuberculosis in the Eastern Cape Province, South Africa. Microbiologyopen 8(3), e00449 (2019).
Rahman, S. M. M. et al. Molecular epidemiology and genetic diversity of multidrug-resistant Mycobacterium tuberculosis isolates in Bangladesh. Microbiol. Spectr. 10(1), e0184821 (2022).
Vincent, A. T. et al. The mycobacterial cell envelope: A relict from the past or the result of recent evolution?. Front. Microbiol. 9, 2341 (2018).
Kaale, S. E., Machangu, R. S. & Lyimo, T. J. Molecular characterization and phylogenetic diversity of actinomycetota species isolated from Lake Natron sediments at Arusha, Tanzania. Microbiol. Res. 278, 127543 (2024).
Batt, S. M. et al. The thick waxy coat of mycobacteria, a protective layer against antibiotics and the host’s immune system. Biochem. J. 477(10), 1983–2006 (2020).
Rito, T., Inlamea, O., Oliveira, O., Duarte, R., Soares, et al. Evolution and molecular characteristics of Mycobacterium tuberculosis and Mycobacterium bovis. In Tuberculosis: Integrated Studies for a Complex Disease 847–865 (Springer, 2023).
O’Reilly, L. M. & Daborn, C. J. The epidemiology of Mycobacterium bovis infections in animals and man: A review. Tuber Lung Dis 76, 1–46. https://doi.org/10.1016/0962-8479(95)90591-X (1995).
Inlamea, O. F. et al. Evolutionary analysis of Mycobacterium bovis genotypes across Africa suggests co-evolution with livestock and humans. PLoS Negl. Trop. Dis. 14, e0008081. https://doi.org/10.1371/journal.pntd.0008081 (2020).
Loiseau, C. et al. An African origin for Mycobacterium bovis. Evol. Med. Public Health 2020, 49–59. https://doi.org/10.1093/emph/eoaa005 (2020).
Al-Shuhaib, M. B. S. & Hashim, H. O. Mastering DNA chromatogram analysis in Sanger sequencing for reliable clinical analysis. J. Genet. Eng. Biotechnol. 21(1), 115 (2023).
Kuczynski, J. et al. Experimental and analytical tools for studying the human microbiome. Nat. Rev. Genet. 13(1), 47–58. https://doi.org/10.1038/nrg3129 (2012).
Qin, D. Next-generation sequencing and its clinical application. Cancer Biol. Med. 16(1), 4–10 (2019).
Palmer, M. V., Wiarda, J., Kanipe, C. & Thacker, T. C. Early pulmonary lesions in cattle infected via aerosolized Mycobacterium bovis. Vet. Pathol. 56(4), 544–554 (2019).
Mousa, H. L. Tuberculosis of bones and joints: Diagnostic approaches. Int. Orthop. 22, 245–246 (1998).
Sankar, M. M., Gopinath, K., Singla, R. & Singh, S. In-vitro antimycobacterial drug susceptibility testing of non-tubercular mycobacteria by tetrazolium microplate assay. Ann. Clin. Microbiol. Antimicrob. 7, 1–9 (2008).
van den Berg, J. & Kuipers, S. The antibacterial action of Moringa oleifera: A systematic review. South Afr. J. Botany 151, 224–233 (2022).
Fouad, E. A., Abu Elnaga, A. S. M. & Kandil, M. M. Antibacterial efficacy of Moringa oleifera leaf extract against pyogenic bacteria isolated from a dromedary camel (Camelus dromedarius) abscess. Vet. World 12(6), 802–808 (2019).
Egharevba, H. O., Oladosu, P., Izebe, K. S. & Kunle, O. F. Chemical composition and anti-tubercular activity of the fixed oil of Moringa oleifera seed. J. Chem. Pharm. Res. 7, 412 (2015).
El-Din, N. M. N. Ecophysiological studies on the draught resistance of Moringa oleifera (lam). Egypt. J. Desert Res. 54(1), 141–155 (2004).
Rahim, M. A. et al. Essential components from plant source oils: A review on extraction, detection, identification, and quantification. Molecules 28(19), 6881. https://doi.org/10.3390/molecules28196881 (2023).
Abdelghany, A. M. et al. Profiling of seed fatty acid composition in 1025 Chinese soybean accessions from diverse ecoregions. Crop J. 8(4), 635–644 (2020).
Orhan, İ, Özçelik, B. & Şener, B. Evaluation of antibacterial, antifungal, antiviral, and antioxidant potentials of some edible oils and their fatty acid profiles. Turk. J. Biol. 35, 251–258 (2011).
Egharevba, H. O., Oladosu, P., Izebe, K. S. & Kunle, O. F. Chemical composition and anti-tubercular activity of the fixed oil of Moringa oleifera seed. J. Chem. Pharm. Res. 7(12), 412–418 (2015).
Shaltout, F. A. Abattoir and bovine tuberculosis as a reemerging foodborne diseas. Clin. Med. Rev. Rep. 6(1), 1–7 (2024).
Kuria J. K. Diseases caused by bacteria in cattle: Tuberculosis. In Bacterial Cattle Diseases (IntechOpen, 2019).
Popa, O., Băbeanu, N. E., Popa, I., Niță, S. & Dinu-Pârvu, C. E. Methods for obtaining and determination of squalene from natural sources. BioMed Res. Int. 2015, 1–16. https://doi.org/10.1155/2015/367202 (2015).
Thorbjarnarson, T. & Drummond, J. C. Occurrence of an unsaturated hydrocarbon in olive oil. Analyst 60(706), 23–29 (1935).
Frega, N., Bocci, F. & Lercker, G. Direct gas chromatographic analysis of the unsaponifiable fraction of different oils with a polar capillary column. J. Am. Oil Chem. Soc. 69, 447–450 (1992).
Noro, J. C. et al. Tetrahdroxysqualene from Rhus taitensis shows antimycobacterial activity against Mycobacterium tuberculosis. J. Natl. Prod. 71(9), 1623–1624 (2008).
Reddy, L. H. & Couvreur, P. Squalene: A natural triterpene for use in disease management and therapy. Adv. Drug Deliv. Rev. 61(15), 1412–1426 (2009).
Zhi, Y. et al. Lead compounds and key residues of ribosomal protein S1 in drug-resistant Mycobacterium tuberculosis. Bioorg. Chem. 82, 58–67 (2019).
Dai, Y. et al. Discovery and evaluation of new compounds targeting ribosomal protein S1 in antibiotic-resistant Mycobacterium tuberculosis. Eur. J. Med. Chem. 196, 112317 (2020).
Hamdy, N. M. Exploring the anti-inflammatory potential of the polyphenolic compounds in Moringa oleifera leaf: In silico molecular docking. Egypt. J. Basic Appl. Sci. 11(1), 367–385 (2024).
Hamdy, N. M. Effect of Moringa oleifera Lam. Leaf extract in treating pneumonia. Egypt. J. Desert Res. 73(2), 423–442 (2023).
Havlicek, J., Murray, A. K., Saxton, T. K. & Roberts, S. C. Current issues in the study of androstenes in human chemosignaling. Vitam. Horm. 83, 47–81 (2010).
Badawy, M. T., Sobeh, M., Xiao, J. & Farag, M. A. Androstenedione (a Natural Steroid and a Drug Supplement): A comprehensive review of its consumption, metabolism, health effects, and toxicity with sex differences. Molecules 26(20), 6210 (2021).