Stock Ticker

Combining phylogeography and climate models to track the diversification and spread of Phlebotomus simici

  • Cecílio, P., Cordeiro-da-Silva, A. & Oliveira, F. Sand flies: Basic information on the vectors of leishmaniasis and their interactions with Leishmania parasites. Commun. Biol. 5, 305 (2022).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jia, L. Y. & Min, Z. L. Chinese phlebotomine sandflies of subgenus Adlerius NITZULESCU, 1931, (Diptera: Psychodidae) and the identity of Phlebotomus sichuanensis LENG & Yin, 1983, Part I—Taxonomical study and geographical distribution. Parasite 8, 3–9 (2001).


    Google Scholar
     

  • Jacobson, R. L. Leishmaniasis in an era of conflict in the Middle East. Vector-Borne Zoon. Dis. 11, 247–258 (2011).

    MATH 

    Google Scholar
     

  • Kasap, O. E., Linton, Y.-M., Karakus, M., Ozbel, Y. & Alten, B. Revision of the species composition and distribution of Turkish sand flies using DNA barcodes. Parasit. Vectors 12, 410 (2019).


    Google Scholar
     

  • Dvorak, V. et al. Sand flies (Diptera: Psychodidae) in eight Balkan countries: Historical review and region-wide entomological survey. Parasit. Vectors 13, 573 (2020).

    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Zhang, L., Ma, Y. & Xu, J. Genetic differentiation between sandfly populations of Phlebotomus chinensis and Phlebotomus sichuanensis (Diptera: Psychodidae) in China inferred by microsatellites. Parasit. Vectors 6, 115 (2013).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Perrotey, S., Benabdennbi, I., Haddad, N., Pesson, B. & Léger, N. Electrophoretic and morphological differentiation between two sympatric species of Adlerius: Phlebotomus brevis and Phlebotomus simici (Diptera: Psychodidae). J. Med. Entomol. 37, 289–294 (2009).


    Google Scholar
     

  • Artemiev, M. M. A revision of sandflies of the subgenus Adlerius (Diptera, Phlebotominae, Phlebotomus). Zool. Zhurnal 59, 1177–1192 (1980).

    MATH 

    Google Scholar
     

  • Dvořák, V. et al. Sand fly fauna of Crete and the description of Phlebotomus (Adlerius) creticus n. sp. (Diptera: Psychodidae). Parasit. Vectors 13, 1–17 (2020).

  • Kniha, E. et al. Phlebotomus (Adlerius) simici NITZULESCU, 1931: First record in Austria and phylogenetic relationship with other Adlerius species. Parasit. Vectors 14, 20 (2021).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Șuleșco, T. et al. Phlebotomine sand fly survey in the Republic of Moldova: Species composition, distribution and host preferences. Parasit. Vectors 14, 371 (2021).

    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Pareyn, M. et al. An integrative approach to identify sand fly vectors of leishmaniasis in Ethiopia by morphological and molecular techniques. Parasit. Vectors 13, 580 (2020).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Guan, L.-R., Zhou, Z.-B., Jin, C.-F., Fu, Q. & Chai, J.-J. Phlebotomine sand flies (Diptera: Psychodidae) transmitting visceral leishmaniasis and their geographical distribution in China: A review. Infect. Dis. Poverty 5, 15 (2016).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Svobodová, M., Volf, P. & Votýpka, J. Experimental transmission of Leishmania tropica to hyraxes (Procavia capensis) by the bite of Phlebotomus arabicus. Microbes Infect. 8, 1691–1694 (2006).

    PubMed 
    MATH 

    Google Scholar
     

  • Sádlová, J., Hajmová, M. & Volf, P. Phlebotomus (Adlerius) halepensis vector competence for Leishmania major and Le. tropica. Med. Vet. Entomol. 17, 244–250 (2003).

  • Chaskopoulou, A., Giantsis, I. A., Demir, S. & Bon, M. C. Species composition, activity patterns and blood meal analysis of sand fly populations (Diptera: Psychodidae) in the metropolitan region of Thessaloniki, an endemic focus of canine leishmaniasis. Acta Trop. 158, 170–176 (2016).

    PubMed 

    Google Scholar
     

  • Giorgobiani, E. et al. Incrimination of Phlebotomus kandelakii and Phlebotomus balcanicus as vectors of Leishmania infantum in Tbilisi, Georgia. PLoS Negl. Trop. Dis. 6 (2012).

  • Kniha, E. et al. Reconstructing the post-glacial spread of the sand fly Phlebotomus mascittii Grassi, 1908 (Diptera: Psychodidae) in Europe. Commun. Biol. 6, 1244 (2023).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cruaud, A., Lehrter, V., Genson, G., Rasplus, J.-Y. & Depaquit, J. Evolution, systematics and historical biogeography of sand flies of the subgenus Paraphlebotomus (Diptera, Psychodidae, Phlebotomus) inferred using restriction-site associated DNA markers. PLoS Negl. Trop. Dis. 15, e0009479 (2021).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pavlou, C. et al. A molecular phylogeny and phylogeography of Greek Aegean Island sand flies of the genus Phlebotomus (Diptera: Psychodidae). Arthropod Syst. Phylogeny 80, 137–154 (2022).

    MATH 

    Google Scholar
     

  • Alten, B. Speciation and dispersion hypotheses of phlebotomine sandflies of the subgenus Paraphlebotomus (Diptera: Psychodidae): The case in Turkey. Hacettepe J. Biol. Chem. 38, 229–246 (2010).


    Google Scholar
     

  • Trájer, A. J. Investigation of the possible role of the Central Paratethys as a migration route and speciation area of the ancestors of Mediterranean Larroussius, Paraphlebotomus and Phlebotomus species. Palaeobiodiversity Palaeoenvironments 103, 165–192 (2023).


    Google Scholar
     

  • Trájer, A. J. Palaeoclimatic models – predicted changes in the potential Neogene distribution patterns of Phlebotomus similis and Phlebotomus sergenti (Insecta: Diptera: Psychodidae). Palaeobiodiversity Palaeoenvironments 102, 149–172 (2022).


    Google Scholar
     

  • Esseghir, S. & Ready, P. D. Speciation of Phlebotomus sandflies of the subgenus Larroussius coincided with the late Miocene-Pliocene aridification of the Mediterranean subregion. Biol. J. Linn. Soc. 70, 189–219 (2000).


    Google Scholar
     

  • Garcia-Castellanos, D. et al. Catastrophic flood of the Mediterranean after the Messinian salinity crisis. Nature 462, 778–781 (2009).

    ADS 
    PubMed 
    MATH 

    Google Scholar
     

  • Trájer, A. J., Sebestyén, V. & Padisák, J. The impacts of the Messinian Salinity Crisis on the biogeography of three Mediterranean sandfly (Diptera: Psychodidae) species. Geobios 65, 51–66 (2021).


    Google Scholar
     

  • Trájer, A. J., Hammer, T. & Padisák, J. Reflection of the Neogene-Quaternary phylogeography in the recent distribution limiting climatic factors of eight Mediterranean Phlebotomus species (Diptera: Psychodidae). J. Nat. Hist. 52, 1763–1784 (2018).


    Google Scholar
     

  • Brower, A. V. Z. Rapid morphological radiation and convergence among races of the butterfly Heliconius erato inferred from patterns of mitochondrial DNA evolution. Proc. Natl. Acad. Sci. 91, 6491–6495 (1994).

    ADS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Farrell, B. D. Evolutionary assembly of the milkweed fauna: Cytochrome oxidase I and the age of tetraopes beetles. Mol. Phylogenet. Evol. 18, 467–478 (2001).

    PubMed 
    MATH 

    Google Scholar
     

  • Quek, S.-P., Davies, S. J., Itino, T. & Pierce, N. E. Codiversification in an ant-plant mutualism: Stem texture and the evolution of host use in Crematogaster (Formicidae: Myrmicinae) inhabitants of Macaranga (Euphorbiaceae). Evolution. 58, 554–570 (2004).

    PubMed 

    Google Scholar
     

  • Trájer, A. J. Characterization of the palaeoenvironmental conditions in the Pannonian Basin during the last 34 mys related to the formation of haematitic and kaolinitic sedimentary rocks. Int. J. Earth Sci. 112, 1361–1387 (2023).


    Google Scholar
     

  • Sanjoba, C., Omachi, S., Sato, K. & Matsumoto, Y. Additional distribution record of Sergentomyia (Neophlebotomus) squamirostris (Newstead) (Diptera: Psychodidae) from Tokyo, Japan. Med. Entomol. Zool. 68, 45–48 (2017).


    Google Scholar
     

  • Trájer, A. J., Walochnik, J. & Kniha, E. The possible region of the Late Miocene split of the sandfly subgenus Transphlebotomus Artemiev and the early late Neogene to late Quaternary dispersal of the ancestor of Phlebotomus mascittii Grassi. Palaeobiodiversity Palaeoenvironments https://doi.org/10.1007/s12549-022-00570-y (2023).

    Article 

    Google Scholar
     

  • Kasap, O. E. et al. Phylogeography of the subgenus Transphlebotomus Artemiev with description of two new species, Phlebotomus anatolicus n. sp. and Phlebotomus killicki n. sp. Infect. Genet. Evol. 34, 467–479 (2015).

  • Usarov, G. X. et al. Phlebotomine sand fly (Diptera: Phlebotominae) diversity in the foci of cutaneous leishmaniasis in the Surxondaryo Region of Uzbekistan: 50 years on. Parasitol. Res. 123, 170 (2024).

    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Akhoundi, M., Parvizi, P., Baghaei, A. & Depaquit, J. The subgenus Adlerius Nitzulescu (Diptera, Psychodidae, Phlebotomus) in Iran. Acta Trop. 122, 7–15 (2012).

    PubMed 

    Google Scholar
     

  • Dergacheva, T. I. & Strelkova, M. V. Epidemiological role of sandflies Phlebotomus smirnovi Perfiliev, 1941 and P. longiductus Parrot, 1928 in visceral leishmaniasis foci in the Kazakh SSR. Trans. R. Soc. Trop. Med. Hyg. 79, 34–36 (1985).

  • Ježek, J., Chvojka, P., Manko, P. & Oboňa, J. Faunistic and bibliographical inventory of moth flies from Ukraine (Diptera, Psychodidae). Zookeys 693, 109–128 (2017).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Trájer, A. J. & Sebestyén, V. The changing distribution of Leishmania infantum Nicolle, 1908 and its Mediterranean sandfly vectors in the last 140 kys. Sci. Rep. 9, 11820 (2019).

    ADS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Trájer, A. J. Paradox negative effects of the mid-pliocene warming on the climatic suitability of six Mediterranean sandfly species in Europe. Biosis: Biol. Syst. 1, 141–156 (2020).


    Google Scholar
     

  • Trájer, A. J. Age and environmental conditions for the formation of the Pannonian mega-yardang system. Int. J. Earth Sci. 113, 875–901 (2024).

    MATH 

    Google Scholar
     

  • Trájer, A. J. Checklist, distribution maps, bibliography of the Hungarian Phlebotomus (Diptera: Psychodidae) fauna complementing with the climate profile of the recent sandfly distribution areas in Hungary. Folia Faun. Slov. 22, 7–12 (2017).


    Google Scholar
     

  • Orshan, L. et al. Distribution and dispersal of Phlebotomus papatasi (Diptera: Psychodidae) in a zoonotic cutaneous leishmaniasis focus, the Northern Negev, Israel. PLoS Negl. Trop. Dis. 10, e0004819 (2016).

    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Vaselek, S. et al. A survey of sand flies (Diptera, Phlebotominae) along recurrent transit routes in Serbia. Acta Trop. 197, 105063 (2019).

    PubMed 
    MATH 

    Google Scholar
     

  • Studentsky, L. et al. Leishmania donovani transmission cycle associated with human infection, Phlebotomus alexandri sand flies, and hare blood meals, Israel. Emerg. Infect. Dis. 29, 945–955 (2023).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Larkin, M. A. et al. Clustal W and Clustal X version 2.0. Bioinformatics 23, 2947–2948 (2007).

  • Nicholas, K. B. Genedoc: A tool for editing and annotating multiple sequence alignments. http://www.pscedu/biomed/genedoc. (1997).

  • Nguyen, L.-T., Schmidt, H. A., von Haeseler, A. & Minh, B. Q. IQ-TREE: A fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol. Biol. Evol. 32, 268–274 (2015).

    PubMed 
    MATH 

    Google Scholar
     

  • Ronquist, F. et al. MrBayes 3.2: Efficient Bayesian phylogenetic inference and model choice across a large model space. Syst. Biol. 61, 539–542 (2012).

  • Zhang, D. et al. PhyloSuite: An integrated and scalable desktop platform for streamlined molecular sequence data management and evolutionary phylogenetics studies. Mol. Ecol. Resour. 20, 348–355 (2020).

    PubMed 
    MATH 

    Google Scholar
     

  • Kalyaanamoorthy, S., Minh, B. Q., Wong, T. K. F., von Haeseler, A. & Jermiin, L. S. ModelFinder: Fast model selection for accurate phylogenetic estimates. Nat. Methods 14, 587–589 (2017).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kuhner, M. K. Coalescent genealogy samplers: Windows into population history. Trends Ecol. Evol. 24, 86–93 (2009).

    PubMed 
    MATH 

    Google Scholar
     

  • Rambaut, A., Drummond, A. J., Xie, D., Baele, G. & Suchard, M. A. Posterior summarization in Bayesian phylogenetics using tracer 1.7. Syst. Biol. 67, 901–904 (2018).

  • Bouckaert, R. et al. BEAST 2.5: An advanced software platform for Bayesian evolutionary analysis. PLoS Comput. Biol. 15, e1006650 (2019).

  • Villesen, P. FaBox: An online toolbox for FASTA sequences. Mol. Ecol. Notes 7, 965–968 (2007).

    MATH 

    Google Scholar
     

  • Depaquit, J., Grandadam, M., Fouque, F., Andry, P. & Peyrefitte, C. Arthropod-borne viruses transmitted by Phlebotomine sandflies in Europe: A review. Eurosurveillance 15, 19507 (2010).

    PubMed 

    Google Scholar
     

  • Esseghir, S., Ready, P. D., Killick-Kendrick, R. & Ben-Ismail, R. Mitochondrial haplotypes and phylogeography of Phlebotomus vectors of Leishmania major. Insect Mol. Biol. 6, 211–225 (1997).

    PubMed 

    Google Scholar
     

  • López‐López, A., Abdul Aziz, A. & Galián, J. Molecular phylogeny and divergence time estimation of Cosmodela (Coleoptera: Carabidae: Cicindelinae) tiger beetle species from Southeast Asia. Zool. Scr. 44, 437–445 (2015).

  • Librado, P. & Rozas, J. DnaSP v5: A software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25, 1451–1452 (2009).

    PubMed 
    MATH 

    Google Scholar
     

  • Kumar, S., Stecher, G., Li, M., Knyaz, C. & Tamura, K. MEGA X: Molecular evolutionary genetics analysis across computing platforms. Mol. Biol. Evol. 35, 1547–1549 (2018).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Templeton, A. R., Crandall, K. A. & Sing, C. F. A cladistic analysis of phenotypic associations with haplotypes inferred from restriction endonuclease mapping and DNA sequence data. III. Cladogram estimation. Genetics 132, 619–633 (1992).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Leigh, J. W. & Bryant, D. POPART: Full-feature software for haplotype network construction. Methods Ecol. Evol. 6, 1110–1116 (2015).

    MATH 

    Google Scholar
     

  • Excoffier, L., Laval, G. & Schneider, S. Arlequin (version 3.0): An integrated software package for population genetics data analysis. Evol. Bioinform. Online 1, 47–50 (2007).

  • Suchard, M. A. et al. Bayesian phylogenetic and phylodynamic data integration using BEAST 1.10. Virus Evol. 4, 1–5 (2018).

  • Chevenet, F., Fargette, D., Bastide, P., Vitré, T. & Guindon, S. EvoLaps 2: Advanced phylogeographic visualization. Virus Evol. 10 (2024).

  • Xhekaj, B. et al. A cross-sectional study on phlebotomine sand flies in relation to disease transmission in the Republic of Kosovo. Med. Vet. Entomol. 38, 573–585 (2024).

    PubMed 

    Google Scholar
     

  • Boutsini, S. et al. Phlebotomine sandflies and factors associated with their abundance in the leishmaniasis endemic area of Attiki, Greece. Parasitol. Res. 117, 107–113 (2018).

    PubMed 

    Google Scholar
     

  • Aransay, A. M., Scoulica, E. & Tselentis, Y. Detection and identification of Leishmania DNA within naturally infected sand flies by seminested PCR on minicircle kinetoplastic DNA. Appl. Environ. Microbiol. 66, 1933–1938 (2000).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xanthopoulou, K. et al. Distribution of sandflies (Diptera, Psychodidae) in two Ionian Islands and Northern Greece. Vector-Borne Zoon. Dis. 11, 1591–1594 (2011).

    MATH 

    Google Scholar
     

  • Fotakis, E. A., Giantsis, I. A., Demir, S., Vontas, J. G. & Chaskopoulou, A. Detection of pyrethroid resistance mutations in the major Leishmaniasis vector Phlebotomus papatasi. J. Med. Entomol. 55, 1225–1230 (2018).

    PubMed 

    Google Scholar
     

  • Tsirigotakis, N. et al. Phlebotomine sand flies (Diptera: Psychodidae) in the Greek Aegean Islands: Ecological approaches. Parasit. Vectors 11, 1–14 (2018).


    Google Scholar
     

  • Karanis, P. et al. Sandfly (Diptera: Psychodidae) distributiοn in Northern Greece. Entomol. Hell. 13, 13 (2017).

    MATH 

    Google Scholar
     

  • Svobodova, M. et al. Distinct transmission cycles of Leishmania tropica in 2 Adjacent Foci, Northern Israel. Emerg. Infect. Dis. 12, 1860–1868 (2006).

    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Vaselek, S. et al. Sandfly surveillance and investigation of Leishmania spp. DNA in sandflies in Kosovo. Med. Vet. Entomol. 34, 394–401 (2020).

  • Yaman, M. & Özbel, Y. The sandflies (Diptera: Psychodidae) in the Turkish province of Hatay: Some possible vectors of the parasites causing human cutaneous leishmaniasis. Ann. Trop. Med. Parasitol. 98, 741–750 (2004).

    PubMed 
    MATH 

    Google Scholar
     

  • Kavur, H., Arikan, H. & Ozbel, Y. Phlebotomus halepensis (Diptera: Psychodidae) vectorial capacity in Afyon and Nigde Province, Turkey. J. Med. Entomol. 55, 317–322 (2018).

    PubMed 

    Google Scholar
     

  • Omondi, Z. N., Demir, S. & Arserim, S. K. Entomological survey of the sand fly fauna of Kayseri Province: Focus on visceral and cutaneous leishmaniasis in Central Anatolia, Turkey. Turkiye parazitolojii Derg. 44, 158–163 (2020).


    Google Scholar
     

  • Ergunay, K. et al. Molecular evidence indicates that Phlebotomus major sensu lato (Diptera: Psychodidae) is the vector species of the recently-identified sandfly fever sicilian virus variant: Sandfly fever Turkey virus. Vector-Borne Zoon. Dis. 12, 690–698 (2012).


    Google Scholar
     

  • Léger, N., Pesson, B. & Madulo-Leblond, G. Les phlébotomes de Grèce. Bull. Soc. Pathol. Exot. 79, 386–397 (1986).


    Google Scholar
     

  • Léger, N. & Pesson, B. Sur la taxonomie et al répartition géographique de Phlebotomus (Adlerius) chinensis s. l. et de P. (Larroussius) major s.l. (Psychodidae-Diptera). Bull. Soc. Pathol. Exot. 80, 252–260 (1987).

  • Leger, N. et al. Les phlébotomes de Crète. Biol. Gall. 20, 135–143 (1993).

    MATH 

    Google Scholar
     

  • Depaquit, J., Ferte, H. & Leger, N. Les phlebotomes (Diptera – Psychodidae) de lìle de Rhodes (Grece). Bull. la Société Française Parasitol. 14, 28–38 (1996).


    Google Scholar
     

  • Wint, G. R. W. et al. VectorNet: Collaborative mapping of arthropod disease vectors in Europe and surrounding areas since 2010. Eurosurveillance 28 (2023).

  • QGIS Development Team. QGIS Geographic Information System. Open Source Geospatial Foundation Project. http://qgis.osgeo.org (2019).

  • Beck, H. E. et al. Present and future Köppen–Geiger climate classification maps at 1-km resolution. Sci. Data 5, 180214 (2018).

    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • MacFerrin, M. et al. ETOPO 2022: An updated NOAA global relief model. AGUFM 2021, NH25B-0560 (2021).

  • Bruch, A. A., Uhl, D. & Mosbrugger, V. Miocene climate in Europe—Patterns and evolution. Palaeogeogr. Palaeoclimatol. Palaeoecol. 253, 1–7 (2007).

    MATH 

    Google Scholar
     

  • Mosbrugger, V. & Utescher, T. The coexistence approach—a method for quantitative reconstructions of tertiary terrestrial palaeoclimate data using plant fossils. Palaeogeogr. Palaeoclimatol. Palaeoecol. 134, 61–86 (1997).


    Google Scholar
     

  • Trájer, A. J. The correspondence between the physiological cold tolerance and the distribution border of Mediterranean sandflies in Southeast Europe. J. Vector Borne Dis. 61, 376–388 (2024).

    PubMed 

    Google Scholar
     

  • Karger, D. N. et al. CHELSA-TraCE21k v1.0. Downscaled transient temperature and precipitation data since the last glacial maximum. Clim. Past Discuss., 1–27 (2021).

  • le Roux, R., Henrico, S., Bezuidenhout, J. & Henrico, I. Inverse distance weighting as an alternative interpolation method to create radiometric maps of natural radionuclide concentrations using QGIS. Proc. ICA 5, 1–7 (2023).

    MATH 

    Google Scholar
     

  • Boussaa, S., Guernaoui, S., Pesson, B. & Boumezzough, A. Seasonal fluctuations of phlebotomine sand fly populations (Diptera: Psychodidae) in the urban area of Marrakech, Morocco. Acta Trop. 95, 86–91 (2005).

    PubMed 

    Google Scholar
     

  • Thornthwaite, C. W. An approach toward a rational classification of climate. Geogr. Rev. 38, 55 (1948).


    Google Scholar
     

  • Nayakarathna, N. M. N. G., Ganehiarachchi, G. A. S. M., Rajapakse, R. P. V. J. & Jayanetti, S. R. Influence of humidity and temperature variation of natural breeding sites on abundance of Leishmaniasis vector Phlebotomus argentipes population in Anuradhapura District. In Proceedings of the International Research Symposium on Pure and Applied Sciences 12 (Faculty of Science, University of Kelaniya, 2016).

  • Kemp, D. Global Environmental Issues (Routledge, 2002). https://doi.org/10.4324/9780203425305

  • Hijmans, R. J. & Graham, C. H. The ability of climate envelope models to predict the effect of climate change on species distributions. Glob. Change Biol. 12, 2272–2281 (2006).

    ADS 
    MATH 

    Google Scholar
     

  • Whitesitt, J. E. Boolean Algebra and Its Applications (Courier Corporation, 2010).

    MATH 

    Google Scholar
     

  • Tajima, F. Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 123, 585–595 (1989).

    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Fu, Y.-X. Statistical tests of neutrality of mutations against population growth, hitchhiking and background selection. Genetics 147, 915–925 (1997).

    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Source link

    Get RawNews Daily

    Stay informed with our RawNews daily newsletter email

    Kane Williamson Reveals Factor Which Helps RR Claim First Win Of IPL 2025 vs CSK

    Italy February preliminary CPI +2.0% vs +1.6% y/y expected

    Using AI to calculate the heart’s biological age predicts increased risk of mortality, cardiovascular events: Study

    Lucknow Super Giants Eye First Home Win Of IPL 2025 Against Punjab Kings