Stock Ticker

Anopheles mosquito fauna, blood meal sources and transmission intensity from high and moderate malaria endemic areas of Ethiopia

  • WHO. World malaria report 2023. Geneva. World Health Organization (2023).

  • FMOH. National Malaria Gudelines, Federal Democratic Republic of Ethiopia, 4th ed, Addis Ababa, Ethiopia (2018).

  • Girum, T., Shumbej, T. & Shewangizaw, M. Burden of malaria in Ethiopia, 2000–2016: Findings from the Global Health Estimates 2016. Trop. Dis. Travel Med. Vaccines. 5, 11. https://doi.org/10.1186/s40794-019-0090-z (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Adugna, T., Getu, E. & Yewhalaw, D. Species diversity and distribution of Anopheles mosquitoes in Bure district. Northwestern Ethiopia. Heliyon. 6, e05063 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • FMoH. Federal Ministry of Health. National strategic plan for malaria prevention, control and elimination in Ethiopia, 2011–2015. Addis Ababa: Ministry of Health of Ethiopia. (2010).

  • Ayele, D. G., Zewotir, T. T. & Mwambi, H. G. Prevalence and risk factors of malaria in Ethiopia. Malar J. 11, 195 (2012).

    Article 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • WHO. World malaria report 2017. Geneva: World Health Organization (2017).

  • Tulu, N. A. Malaria. The Ecology of Health and Disease in Ethiopia. Edited by: Kloos, H. Zein, A. Z. Boulder, USA: Westview Press Inc, 341–352. 2 (1993).

  • Deressa, W., Ali, A. & Enqusellassie, F. Self-treatment of malaria in rural communities, Butajira, southern Ethiopia. Bull. World Health Organization. 81, 261–268 (2003).


    Google Scholar
     

  • Delil, R. Magnitude of malaria and factors among febrile cases in low transmission areas of Hadiya zone, Ethiopia: a facility based cross sectional study. PLoS One. 11, e0154277 (2016).

    Article 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Yalew, W. G. et al. Current and cumulative malaria infections in a setting embarking on elimination: Amhara. Ethiopia. Malar J. 16, 242 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Berhanu, B., Seleshi, Y. & Melesse, A. M. Surface water and groundwater resources of ethiopia: potentials and challenges of water resources development. Nile River Basin: Ecohydrol. Challenges, Climate Change Hydropolitics https://doi.org/10.1007/978-3-319-02720-3_6 (2014).

    Article 
    MATH 

    Google Scholar
     

  • Taffese, H. S. et al. Malaria epidemiology and interventions in Ethiopia from 2001 to 2016. Infect Dis. Poverty. 7, 103. https://doi.org/10.1186/s40249-018-0487-3 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gebre, B. & Negash, Y. Severe malaria among children in Gambella, western Ethiopia. Ethiop. J. Health Dev. 16, 61–70. https://doi.org/10.4314/EJHD.V16I1.9827 (2002).

    Article 

    Google Scholar
     

  • Aregawi, M. et al. Time series analysis of trends in malaria cases and deaths at hospitals and the effect of antimalarial interventions, 2001–2011. Ethiopia. PLoS One. 9, e106359. https://doi.org/10.1371/journal.pone.0106359 (2014).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhou, G. et al. Analysis of asymptomatic and clinical malaria in urban and suburban settings of southwestern Ethiopia in the context of sustaining malaria control and approaching elimination. Malar J. 15, 250 (2016).

    Article 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Souleiman, Y., Ismail, L. & Eftimie, R. Modeling and investigating malaria P. Falciparum and P. Vivax infections: application to Djibouti data. Infect. Dis. Model. 9, 1095–1116 (2024).

    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Assefa, A. The third Ethiopian Malaria Indicator Survey 2015 (EMIS-2015). 28th Annual conference (2016).

  • FMoH. Federal Ministry of Health> National Malaria Elimination Roadmap. Addis Ababa, Ethiopia (2017).

  • Daba, C. et al. A retrospective study on the burden of malaria in northeastern ethiopia from 2015 to 2020: implications for pandemic preparedness. Infect. Drug Resist. 16, 821–828 (2023).

    Article 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Mahande, A., Mosha, F., Mahande, J. & Kweka, E. Feeding and resting behaviour of malaria vector, Anopheles arabiensis with reference to zooprophylaxis. Malar J. 6, 100. https://doi.org/10.1186/1475-2875-6-100 (2007).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Onyabe, D. Y. & Conn, J. E. Population genetic structure of the malaria mosquito Anopheles arabiensis across Nigeria suggests range expansion. Mol. Ecol. 10, 2577–2591 (2001).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Mutero, C. M. et al. A transdisciplinary perspective on the links between malaria and agroecosystems in Kenya. Acta Trop. 89, 171–186 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Abose, T. et al. Re‑Orientation and definition of the role of malaria vector control in Ethio‑ pia; the epidemiology and control of malaria with special emphasis to the distribution, behaviour and susceptibility to insecticides of anopheline vectors and chloroquine resistance in Ziway, Central Ethiopia and other areas. Addis Ababa (1998).

  • FMoH. Entomological profile of malaria in Ethiopia. Addis Ababa: Federal Ministry of Health (2007).

  • PMI. Africa IRS (AIRS) Project Indoor Residual Spraying (IRS 2) Task Order Six. Ethiopia 2016 End of spray report. Bethesda, MD: Abt Associates Inc (2016).

  • Afrane, Y. A., Bonizzoni, M. & Yan, G. Secondary Malaria Vectors of Sub-Saharan Africa: Threat to Malaria Elimination on the Continent?. Current Topics in Malaria. InTech; 2016. Available from: https://doi.org/10.5772/65359.

  • Tsegaye, A. et al. Susceptibility of primary, secondary and suspected vectors to Plasmodium vivax and Plasmodium falciparum infection in Ethiopia. Parasit Vectors. 15, 384. https://doi.org/10.1186/s13071-022-05467-5 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Carter, T. E. et al. First detection of Anopheles stephensi Liston, 1901 (Diptera: Culicidae) in Ethiopia using molecular and morphological approaches. Acta Trop. 188, 180–186 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Balkew, M. et al. Geographical distribution of Anopheles stephensi in eastern Ethiopia. Parasit Vectors. 13, 35. https://doi.org/10.1186/s13071-020-3904-y (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Assa, A., Eligo, N. & Massebo, F. Anopheles mosquito diversity, entomological indicators of malaria transmission and challenges of morphological identification in southwestern Ethiopia. Trop. Med. Health. 51, 38. https://doi.org/10.1186/s41182-023-00529-5 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ogola, E. et al. Composition of Anopheles mosquitoes, their blood-meal hosts, and Plasmodium falciparum infection rates in three islands with disparate bed net coverage in Lake Victoria. Kenya. Malar J. 16, 360. https://doi.org/10.1186/s12936-017-2015-5 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Woyessa, D. et al. Species composition, infection rate and detection of resistant alleles in Anopheles funestus (Diptera: Culicidae) from Lare, a malaria hotspot district of Ethiopia. Malar J. 22, 233. https://doi.org/10.1186/s12936-023-04667-3 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shaukat, A., Breman, J. G. & McKenzie, F. E. Using entomological inoculation rate to assess the impact of vector control on malaria parasite transmission and elimination. Malar J. 9, 122 (2010).

    Article 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Vitor-Silva, S. et al. Declining malaria transmission in rural Amazon: changing epidemiology and challenges to achieve elimination. Malar J. 15, 266 (2016).

    Article 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Bretscher, M. T. et al. Measurement of Plasmodium falciparum transmission intensity using serological cohort data from Indonesian schoolchildren. Malar J. 12, 21 (2013).

    Article 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Kerkhof, K. et al. Implementation and application of a multiplex assay to detect malaria specific antibodies: a promising tool for assessing malaria transmission in Southeast Asian preelimination areas. Malar J. 14, 338 (2015).

    Article 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Kelly-Hope, L. A. & McKenzie, F. E. The multiplicity of malaria transmission: a review of entomological inoculation rate measurements and methods across sub-Saharan Africa. Malar. J. 8, 19. https://doi.org/10.1186/1475-2875-8-19.PMID:19166589;PMCID:PMC2656515 (2009).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hay, S. I., David, J. R., Jonathan, F. T. & Robert, W. Annual Plasmodium falciparum entomological inoculation rates (EIR) across Africa: literature survey, internet access and review. T. Roy Soc. Trop. Med. H. 94, 113–127 (2000).

    Article 
    CAS 

    Google Scholar
     

  • Smith, D. L. & Ellis McKenzie, F. Statics and dynamics of malaria infection in Anopheles mosquitoes. Malar. J. 3, 13. https://doi.org/10.1186/1475-2875-3-13 (2004).

    Article 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Ulrich, J., Naranjo, D. P. & Alimi, T. O. How much vector control is needed to achieve malaria elimination?. Trends Parasitol. 29, 104–109 (2013).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jeyaprakasam, N. K. et al. Blood meal analysis of Anopheles vectors of simian malaria based on laboratory and field studies. Sci. Rep. 12, 354. https://doi.org/10.1038/s41598-021-04106-w (2022).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mwangangi, J. M. et al. Blood-meal analysis for anopheline mosquitoes sampled along the Kenyan coast. J. Am. Mosq. Control Assoc. 19, 371–375 (2003).

    PubMed 

    Google Scholar
     

  • Garrett-Jones, C., Boreham, P. F. L. & Pant, C. P. Feeding habits of anophelines (Diptera: Culicidae) in 1971–78, with reference to the human blood index: a review. Bull. Entom. Res. 70, 165–185. https://doi.org/10.1017/S0007485300007422 (1980).

    Article 

    Google Scholar
     

  • Hansen, I. A., Attardo, G. M., Rodriguez, S. D. & Drake, L. L. Four-way regulation of mosquito yolk protein precursor genes by juvenile hormone-, ecdysone-, nutrient-, and insulin-like peptide signaling pathways. Front. Physiol. https://doi.org/10.3389/fphys.2014.00103 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bashar, K., Tuno, N., Ahmed, T. U. & Howlader, A. J. Blood-feeding patterns of Anopheles mosquitoes in a malaria-endemic area of Bangladesh. Parasit Vectors. 5, 39. https://doi.org/10.1186/1756-3305-5-39 (2012).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Takken, W. & Verhulst, N. O. Host preferences of blood-feeding mosquitoes. Ann. Rev. Entomol. https://doi.org/10.1146/annurev-ento-120811-153618 (2013).

    Article 
    MATH 

    Google Scholar
     

  • Stone, C. & Gross, K. Evolution of host preference in anthropophilic mosquitoes. Malar J. https://doi.org/10.1186/s12936-018-2407-1 (2018).

    Article 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Escobar, D. et al. Blood meal sources of anopheles spp in malaria endemic areas of honduras. Insects. 16(11), 450. https://doi.org/10.3390/insects11070450 (2020).

    Article 

    Google Scholar
     

  • Gueye, A. et al. Host feeding preferences of malaria vectors in an area of low malaria transmission. Sci. Rep. 13, 16410. https://doi.org/10.1038/s41598-023-43761-z (2023).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Bousema, T. et al. The impact of hotspot-targeted interventions on malaria transmission in rachuonyo south district in the western kenyan highlands: a cluster-randomized controlled trial. PLoS Med. 13, e1001993. https://doi.org/10.1371/journal.pmed.1001993 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bousema, T. et al. The impact of hotspot-targeted interventions on malaria transmission: study protocol for a cluster-randomized controlled trial. Trials. 14, 36. https://doi.org/10.1186/1745-6215-14-36 (2013) (PMID:23374910).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Oesterholt, M. J. et al. Spatial and temporal variation in malaria transmission in a low endemicity area in northernTanzania. Malar. J. 5, 98 (2006) (PMID: 17081311).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Knudson, A. et al. Spatio-temporal dynamics of Plasmodium falciparum transmission within a spatial unit on the Colombian Pacific Coast. Sci. Rep. 10, 3756. https://doi.org/10.1038/s41598-020-60676-1 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Haileselassie, W. et al. International border malaria transmission in the Ethiopian district of Lare, Gambella region: implications for malaria spread into South Sudan. Malar J. 22, 64. https://doi.org/10.1186/s12936-023-04479-5 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Woyessa, D. & Yewhalaw, D. Seasonal dynamics, resting behaviour and insecticide susceptibility of Anopheles mosquitoes across two differentially malaria-endemic regions in Ethiopia. Curr. Res. Parasitol Vector-Borne Dis. https://doi.org/10.1016/j.crpvbd.2024.100224 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chanyalew, et al. Composition of mosquito fauna and insecticide resistance status of Anopheles gambiae sensu lato in Itang special district, Gambella, Southwestern Ethiopia. Malar J https://doi.org/10.1186/s12936-022-04150-5 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jemal, A. & Ketema, T. A declining pattern of malaria prevalence in Asendabo Health Center Jimma zone. Southwest Ethiopia. BMC Res Notes 12, 290. https://doi.org/10.1186/s13104-019-4329-6 (2019).

    Article 
    PubMed 
    MATH 

    Google Scholar
     

  • Massebo, F., Balkew, M., Gebre-Michael, T. & Lindtjørn, B. Blood meal origins and insecticide susceptibility of Anopheles arabiensis from Chano in south-west Ethiopia. Parasit Vectors. 6, 44 (2013).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Abraham, M., Massebo, F. & Lindtjørn, B. High entomological inoculation rate of malaria vectors in area of high coverage of interventions in southwest Ethiopia: Implication for residual malaria transmission. Parasite Epidemiol. Control. 2, 61–69. https://doi.org/10.1016/j.parepi.2017.04.003 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Getachew, D. et al. Species composition, blood meal hosts and Plasmodium infection rates of Anopheles mosquitoes in Ghibe River Basin, southwestern Ethiopia. Parasit Vectors. 12, 257. https://doi.org/10.1186/s13071-019-3499-3 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Animut, A., Balkew, M., Gebre-Michael, T. & Lindtjørn, B. Blood meal sources and entomological inoculation rates of anophelines along a highland altitudinal transect in south-central Ethiopia. Malar. J. 12, 76. https://doi.org/10.1186/1475-2875-12-76 (2013).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kenea, O. et al. Human-biting activities of Anopheles species in south-central Ethiopia. Parasit Vectors https://doi.org/10.1186/s13071-016-1813-x (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Degefa, T., Githekob, A. K., Leec, M., Yanc, G. & Yewhalawa, D. Patterns of human exposure to early evening and outdoor biting mosquitoes and residual malaria transmission in Ethiopia. Acta Trop. https://doi.org/10.1016/j.actatropica.2021.105837 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Eba, K. et al. Anopheles arabiensis hotspots along intermittent rivers drive malaria dynamics in semi-arid areas of Central Ethiopia. Malar J. 20, 154. https://doi.org/10.1186/s12936-021-03697-z (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Hurni, H. Agroecological belts of Ethiopia: explanatory notes on three maps at a scale of 1: 1,000,000. Soil Conservation Research Program of Ethiopia. Addis Ababa, Ethiopia, 31 (1998).

  • Ayalew, M. The role of rainfall amount and distribution on agriculture systems and crop cropping systems of different agro-ecological regions of ethiopia: a review. Int. J. Agric. Res. 7, 26–40 (2020).

    MATH 

    Google Scholar
     

  • Gillies, M. T. & Coetzee, M. A. Supplement to the Anophelinae of Africa South of the Sahara (African region), Johannesburg: South Africa Institute for Medical Research (1987). file:///C:/Users/user/Downloads/190531%20 (7).pdf. Accessed 20 June, 2024.

  • Gimnig, J. E. et al. Incidence of malaria among mosquito collectors conducting human landing catches in Western Kenya. Am. J. Trop. Med. Hyg. 88, 301–308. https://doi.org/10.4269/ajtmh.2012.12-0209 (2013).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • WHO. Malaria entomology and vector control. Geneva: World Health Organization (2013).

  • FMoH. National Malaria Gudelines, Federal Democratic Republic of Ethiopia, 3rd ed. Addis Ababa, Ethiopia (2012).

  • Wooden, J., Kyes, S. & Sibley, C. H. PCR and Strain Identification in Plasmodium falciparum. Parasitol Today. 9, 303–305 (1993).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Scott, J. A., Brogdon, W. G. & Collins, F. H. Identification of single specimens of the Anopheles gambiae complex by the polymerase chain reaction. Am. J. Trop. Med. Hyg. 49, 520–529. https://doi.org/10.4269/ajtmh.1993.49.520 (1993) (PMID: 8214283).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Koekemoer, L. L., Kamau, L., Hunt, R. H. & Coetzee, M. A cocktail polymerase chain reaction assay to identify members of the Anopheles funestus (Diptera: Culucidae) group. Am. J. Trop. Med. Hyg. 6, 804–811 (2002).

    Article 

    Google Scholar
     

  • Beier, J. C. et al. Field evaluation of an enzyme-linked immunosorbent assay (ELISA) for Plasmodium falciparum sporozoite detection in anopheline mosquitoes from Kenya. Am. J. Trop. Med. Hyg. 36, 459–468. https://doi.org/10.4269/ajtmh.1987.36.459 (1987) (PMID: 3555134).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bigoga, J. D. et al. Seasonal prevalence of malaria vectors and entomological inoculation rates in the rubber cultivated area of Niete. South Region Cameroon. Parasit Vectors. 5, 197. https://doi.org/10.1186/1756-3305-5-197 (2012).

    Article 
    PubMed 

    Google Scholar
     

  • Pappa, V., Reddy, M., Overgaard, H. J., Abaga, S. & Caccone, A. Estimation of the Human Blood Index in malaria mosquito vectors in Equatorial Guinea after indoor antivector interventions. Am. J. Trop. Med. Hyg. 84, 298–301 (2011).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • World Health Organization (WHO). Larval Source Management: A Supplementary Measure for Malaria Vector Control. Geneva: World Health Organization (2013).

  • World Health Organization (WHO). Guidelines for Malaria Vector Control. Geneva: World Health Organization (2019).

  • Keating, J. et al. Community-based environmental management for malaria control in Africa. Malaria J. 2, 10 (2003).

    Article 
    MATH 

    Google Scholar
     

  • Killeen, G. F. Characterizing, controlling and eliminating residual malaria transmission. Malar. J. 13, 330. https://doi.org/10.1186/1475-2875-13-330 (2014).

    Article 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Adugna, T., Yewhelew, D. & Getu, E. Bloodmeal sources and feeding behaviour of anopheline mosquitoes in Bure district, northwestern Ethiopia. Parasites Vectors 14, 166. https://doi.org/10.1186/s13071-021-04669-7 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pluess, B., Tanser, F. C., Lengeler, C. & Sharp, B. L. Indoor residual spraying for preventing malaria. Cochrane Database Syst. Rev. https://doi.org/10.1002/14651858.CD006657.pub2 (2010).

    Article 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Degefa, T. et al. Indoor and outdoor malaria vector surveillance in western Kenya: implications for better understanding of residual transmission. Malar J. 16, 443. https://doi.org/10.1186/s12936-017-2098-z (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ondeto, B. M. et al. Malaria vector bionomics and transmission in irrigated and non-irrigated sites in western Kenya. Parasitol Res. 121, 3529–3545. https://doi.org/10.1007/s00436-022-07678-2 (2022).

    Article 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • FMoH. Federal Minstry of Health. National Malaria Guidelines. Fourth Ed. Addis Ababa, Ethiopia. 1–108 (2017).

  • Dia, I., Guelbeogo, M. G. & Ayala, D. 2013. Advances and perspectives i the study of the malaria mosquito Anopheles funestus. In: Anopheles mosquitoes. (eds. Manguin S). (Springer, London)

  • Doucoure, S. et al. Anopheles arabiensis and Anopheles funestus biting patterns in Dielmo, an area of low level exposure to malaria vectors. Malar J. 19, 230. https://doi.org/10.1186/s12936-020-03302-9 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Source link

    Get RawNews Daily

    Stay informed with our RawNews daily newsletter email

    Anopheles mosquito fauna, blood meal sources and transmission intensity from high and moderate malaria endemic areas of Ethiopia

    Don’t Wash Your Rice? Hope You Like The Taste Of Rice Weevils

    Ice Cube Delivers World Series Trophy In L.A. Style At Dodger Stadium

    Jasprit Bumrah Injury: MI Coach Says “Everything Okay”, But Star Pacer Still Can’t Play. Here’s Why