Moghimi, N. et al. The neurological manifestations of post-acute sequelae of SARS-CoV-2 infection. Curr. Neurol. Neurosci. Rep. 21, 1–17 (2021).
Parker, A. M. et al. Addressing the post-acute sequelae of SARS-CoV-2 infection: A multidisciplinary model of care. Lancet Respiratory Med. 9 (11), 1328–1341 (2021).
Vehar, S., Boushra, M., Ntiamoah, P. & Biehl, M. Post-acute sequelae of SARS-CoV-2 infection: Caring for the ‘long-haulers’. Cleve Clin. J. Med. 88 (5), 267–272 (2021).
Sudre, C. H. et al. Attributes and predictors of long COVID. Nat. Med. 27 (4), 626–631 (2021).
Carfì, A., Bernabei, R. & Landi, F. Persistent symptoms in patients after acute COVID-19. Jama 324 (6), 603–605 (2020).
Islam, M. F., Cotler, J. & Jason, L. A. Post-viral fatigue and COVID-19: Lessons from past epidemics. Fatigue Biomed. Health Behav. 8 (2), 61–69. https://doi.org/10.1080/21641846.2020.1778227 (2020).
Wu, Y. et al. Nervous system involvement after infection with COVID-19 and other coronaviruses. Brain. Behav. Immun. 87, 18–22 (2020).
Khateb, M., Bosak, N. & Muqary, M. Coronaviruses and central nervous system manifestations. Front. Neurol. 11doi https://doi.org/10.3389/fneur.2020.00715 (2020).
Haider, H. F. & Szczepek, A. J. Neurotological consequences of long COVID. Front. Neurol. 13, 1087896 (2022).
Junior, G. Z. et al. Neurologic and neuropsychiatric symptoms in long-COVID 19 syndrome: A systematic review (Research Square Platform LLC, 2022).
Wu, Y. et al. Nervous system involvement after infection with COVID-19 and other coronaviruses. Brain Behav. Immun.. 87, 18–22. https://doi.org/10.1016/j.bbi.2020.03.031 (2020).
Alves de Sousa, F., Costa, R., Xará, S., Pinto, A. & Almeida, E. S. SARS-CoV-2 and hearing: An audiometric analysis of COVID-19 hospitalized patients. J. Otol.(2021).
Verma, H., Shah, J., Akhilesh, K. & Shukla, B. Patients’ perspective about speech, swallowing and hearing status post-SARS-CoV-2 (COVID-19) recovery: E-survey. Eur. Arch. Otorhinolaryngol. 279 (5), 2523–2532. https://doi.org/10.1007/s00405-021-07217-2 (2022).
Almishaal, A. A. & Alrushaidan, A. A. Short- and long-term self-reported audiovestibular symptoms of SARS-CoV-2 infection in hospitalized and nonhospitalized patients. Audiol. Neurotol. 1–15. (2022).
De Luca, P. et al. Long COVID, audiovestibular symptoms and persistent chemosensory dysfunction: A systematic review of the current evidence. Acta Otorhinolaryngol. Ital. 42, S87–S93 (2022).
Gedik, Ö., Hüsam, H., Başöz, M., Tas, N. & Aksoy, F. The effect of coronavirus disease 2019 on the hearing system. J. Laryngol. Otol. 135 (9), 810–814. https://doi.org/10.1017/s0022215121001961 (2021).
Öztürk, B., Kavruk, H. & Aykul, A. Audiological findings in individuals diagnosed with COVID-19. Am. J. Otolaryngol. 43 (3), 103428 (2022).
Dorobisz, K., Pazdro-Zastawny, K., Misiak, P., Kruk-Krzemień, A. & Zatoński, T. Sensorineural hearing loss in patients with Long-COVID-19: Objective and behavioral audiometric findings. Infect. Drug Resist. 16, 1931–1939 (2023).
Burkard, R. F. & Sims, D. The human auditory brainstem response to high click rates. (2001).
Don, M., Allen, A. R. & Starr, A. Effect of click rate on the latency of auditory brain stem responses in humans. Ann. Otol. Rhinol. Laryngol. 86 (2), 186–195 (1977).
Yagi, T. & Kaga, K. The effect of the click repetition rate on the latency of the auditory evoked brain stem response and its clinical use for a neurological diagnosis. Arch. Oto-Rhino-Laryngol. 222 (2), 91–97. https://doi.org/10.1007/bf00469746 (1979).
Paludetti, G., Maurizi, M. & Ottaviani, F. Effects of stimulus repetition rate on the auditory brain stem responses (ABR). Otol. Neurotol. 4 (3), 226–234 (1983).
Jacobson, J. T., Murray, T. & Deppe, U. The effects of ABR stimulus repetition rate in multiple sclerosis. Ear Hear. 8 (2), 115–120 (1987).
Johannesen, P. T. & Lopez-Poveda, E. A. Age-related central gain compensation for reduced auditory nerve output for people with normal audiograms, with and without tinnitus. Iscience 24(6) (2021).
Rumschlag, J. A. et al., Age-related central gain with degraded neural synchrony in the auditory brainstem of mice and humans. Neurobiol. Aging. 115, 50–59. https://doi.org/10.1016/j.neurobiolaging.2022.03.014 (2022).
White, K. R., Forsman, I., Eichwald, J. & Munoz, K. Apr. The evolution of early hearing detection and intervention programs in the United States. Seminars Perinatol. 34 (2), 170–179 (2010). https://doi.org/10.1053/j.semperi.2009.12.009
Caspary, D. M., Milbrandt, J. C. & Helfert, R. H. Central auditory aging: GABA changes in the inferior colliculus. Exp. Gerontol. 30 (3–4), 349–360 (1995).
Harris, K. C. et al. Afferent loss, GABA, and central gain in older adults: Associations with speech recognition in noise. J. Neurosci. 42 (38), 7201–7212. https://doi.org/10.1523/jneurosci.0242-22.2022 (2022).
Auerbach, B. D., Rodrigues, P. V. & Salvi, R. J. Central gain control in tinnitus and hyperacusis. Rev. Front. Neurol.. 24 (206) (2014). https://doi.org/10.3389/fneur.2014.00206 (2014).
Roberts, L. E. & Salvi, R. Overview Hearing Loss, Tinnitus, Hyperacusis, and the Role of Central Gain, p. 1–7 (Elsevier, 2019).
Baguley, D., McFerran, D., Hall, D. & Tinnitus Lancet 382 (9904), 1600–1607 (2013).
Shulman, A., Goldstein, B. & Strashun, A. M. Central nervous system neurodegeneration and tinnitus: A clinical experience. Int. Tinnitus J. 13, 118–131 (2007).
Vasilkov, V. et al. Evidence of cochlear neural degeneration in normal-hearing subjects with tinnitus. Sci. Rep. 13 (1). https://doi.org/10.1038/s41598-023-46741-5 (2023).
Auerbach, B. D., Radziwon, K. & Salvi, R. Testing the central gain model: Loudness growth correlates with central auditory gain enhancement in a rodent model of hyperacusis. Neurosci. 21, 407:93–107. https://doi.org/10.1016/j.neuroscience.2018.09.036 (2019).
Valderrama, J. T. et al. Effects of lifetime noise exposure on the middle-age human auditory brainstem response, tinnitus and speech-in-noise intelligibility. Hear. Res. 365, 36–48. https://doi.org/10.1016/j.heares.2018.06.003 (2018). 2018/08/01/.
Gu, J. W., Halpin, C. F., Nam, E-C., Levine, R. A. & Melcher, J. R. Tinnitus, diminished sound-level tolerance, and elevated auditory activity in humans with clinically normal hearing sensitivity. J. Neurophysiol. (2010).
Milloy, V., Fournier, P., Benoit, D., Noreña, A. & Koravand, A. Auditory brainstem responses in tinnitus: A review of who, how, and what? Front. Aging Neurosci. 9, 237 (2017).
Gu, J. W., Herrmann, B. S., Levine, R. A. & Melcher, J. R. Brainstem auditory evoked potentials suggest a role for the ventral cochlear nucleus in tinnitus. J. Assoc. Res. Otolaryngol. 13 (6), 819–833. https://doi.org/10.1007/s10162-012-0344-1 (2012).
Bramhall, N. F., Konrad-Martin, D. & McMillan, G. P. Tinnitus and auditory perception after a history of noise exposure: Relationship to auditory brainstem response measures. Ear Hear. 39 (5), 881–894. https://doi.org/10.1097/aud.0000000000000544 (2018).
Schaette, R. & McAlpine, D. Tinnitus with a normal audiogram: Physiological evidence for hidden hearing loss and computational model. J. Neurosci. Off. J. Soc. Neurosci. 21 (38), 13452–13457. https://doi.org/10.1523/jneurosci.2156-11.2011 (2011).
Tampas, J. W. & Harkrider, A. W. Auditory evoked potentials in females with high and low acceptance of background noise when listening to speech. J. Acoust. Soc. Am. 119 (3), 1548–1561 (2006).
Shargorodsky, J., Curhan, G. C. & Farwell, W. R. Prevalence and characteristics of tinnitus among US adults. Am. J. Med. 123 (8), 711–718 (2010).
Kramer, S. E., Kapteyn, T. S., Festen, J. M. & Tobi, H. Factors in subjective hearing disability. Audiol.. 34 (6), 311–320 (1995).
Beck, A. T., Steer, R. A. & Brown, G. K. Beck depression inventory. San Antonio TX (1987).
Beck, A. T., Epstein, N., Brown, G. & Steer, R. Beck anxiety inventory. J. Consult. Clin. Psychol. (1993).
Beck, A. T., Steer, R. A. & Brown, G. K. BDI-II, Beck Depression Inventory 2nd edn vi (Psychological Corp, 1996).
Chalder, T. et al. Development of a fatigue scale. J. Psychosom. Res. 37 (2), 147–153. https://doi.org/10.1016/0022-3999(93)90081-p (1993).
Cella, M. & Chalder, T. Measuring fatigue in clinical and community settings. J. Psychosom. Res. 69 (1), 17–22. https://doi.org/10.1016/j.jpsychores.2009.10.007 (2010).
Loge, J. H., Ekeberg, O. & Kaasa, S. Fatigue in the general Norwegian population: Normative data and associations. J. Psychosom. Res. 45 (1), 53–65. https://doi.org/10.1016/s0022-3999(97)00291-2 (1998).
Cicerone, K. D. & Kalmar, K. Persistent postconcussion syndrome: The structure of subjective complaints after mild traumatic brain injury. J. Head Trauma Rehabil. 10 (3), 1–17 (1995).
Caplan, L. J. et al. The structure of postconcussive symptoms in 3 US military samples. J. Head Trauma Rehabil. 25 (6), 447–458 (2010).
Liberman, M. C. & Kujawa, S. G. Cochlear synaptopathy in acquired sensorineural hearing loss: Manifestations and mechanisms. Hear. Res. Jun. 349, 138–147. https://doi.org/10.1016/j.heares.2017.01.003 (2017).
Hamdy, M. M., Hosny, N. A., Farag, R. G. & Elbohy, Z. M. Y. Assessment of cortical evoked potential (P300) and auditory brainstem response (ABR) in post-COVID-19 patients. Egypt. J. Otolaryngol. 40 (1). https://doi.org/10.1186/s43163-024-00612-6 (2024).
Yong, S. J. Persistent brainstem dysfunction in Long-COVID: A hypothesis. ACS Chem. Neurosci.. 17 (4), 573–580. https://doi.org/10.1021/acschemneuro.0c00793 (2021).
Reichard, R. R. et al. Neuropathology of COVID-19: A spectrum of vascular and acute disseminated encephalomyelitis (ADEM)-like pathology. Acta Neuropathol. 140, 1–6 (2020).
Yong, S. J. Persistent brainstem dysfunction in long-COVID: A hypothesis. ACS Chem. Neurosci. 12 (4), 573–580 (2021).
Yong, S. J. Long COVID or post-COVID-19 syndrome: Putative pathophysiology, risk factors, and treatments. Infect. Dis. 53 (10), 737–754 (2021).
DeLuca, J., Genova, H. M., Hillary, F. G. & Wylie, G. Neural correlates of cognitive fatigue in multiple sclerosis using functional MRI. J. Neurol. Sci. 270 (1–2), 28–39 (2008).
Krupp, L. B. & Elkins, L. E. Fatigue and declines in cognitive functioning in multiple sclerosis. Neurology 55 (7), 934–939 (2000).
Robinson, K. & Rudge, P. The stability of the auditory evoked potentials in normal man and patients with multiple sclerosis. J. Neurol. Sci. 36 (1), 147–156 (1978).
Vasilkov, V. et al. Evidence of cochlear neural degeneration in normal-hearing subjects with tinnitus. Sci. Rep. 13 (1), 19870 (2023).
Kaltenbach, J. A. Tinnitus: models and mechanisms. Hear. Res. 276 (1–2), 52–60 (2011).
Bhat, R. et al. Inhibitory role for GABA in autoimmune inflammation. Proc. Natl. Acad. Sci. 107 (6), 2580–2585 (2010).
Versace, V. et al. Intracortical GABAergic dysfunction in patients with fatigue and dysexecutive syndrome after COVID-19. Clin. Neurophysiol. 132 (5), 1138–1143 (2021).
Marinkovic, K. et al. Cortical GABA levels are reduced in post-Acute COVID-19 syndrome. Brain Sci. 13 (12), 1666 (2023).
Isler, B. et al. Lower glutamate and GABA levels in auditory cortex of tinnitus patients: A 2D-JPRESS MR spectroscopy study. Sci. Rep. 12 (1). https://doi.org/10.1038/s41598-022-07835-8 (2022).
Petty, F. GABA and mood disorders: A brief review and hypothesis. J. Affect. Disord. 34 (4), 275–281 (1995).
Baldwin, C. L. Auditory Cognition and Human Performance: Research and Applications (CRC, 2012).
Pichora-Fuller, M. K. et al. Hearing impairment and cognitive energy: The framework for Understanding effortful listening (FUEL). Ear Hear. 37 (1), 5S–27S. https://doi.org/10.1097/aud.0000000000000312 (2016).
Chaudhuri, A. & Behan, P. O. Fatigue and basal ganglia. J. Neurol. Sci. 179 (1–2), 34–42 (2000).
Chaudhuri, A. & Behan, P. O. Fatigue in neurological disorders. Lancet 363 (9413), 978–988 (2004).
Lange, G. et al. Objective evidence of cognitive complaints in chronic fatigue syndrome: A BOLD fMRI study of verbal working memory. NeuroImage 26, 513–524 (2005).
Stockard, J. J. & Rossiter, V. S. Clinical and pathologic correlates of brain stem auditory response abnormalities. Neurology 27 (4), 316–316 (1977).
Kamerer, A. M. et al. The role of cognition in common measures of peripheral synaptopathy and hidden hearing loss. Am. J. Audiol. 28 (4), 843–856 (2019).
Allen, P. & Allan, C. Auditory processing disorders: Relationship to cognitive processes and underlying auditory neural integrity. Int. J. Pediatr. Otorhinolaryngol. 78 (2), 198–208 (2014).
Caspary, D. M., Ling, L., Turner, J. G. & Hughes, L. F. Inhibitory neurotransmission, plasticity and aging in the mammalian central auditory system. J. Exp. Biol. 211 (11), 1781–1791 (2008).
Sivagurunathan, N. & Calivarathan, L. SARS-CoV-2 infection to premature neuronal aging and neurodegenerative diseases: Is there any connection with hypoxia? CNS Neurol. Disord Drug Targets. 23 (4), 431–448. https://doi.org/10.2174/1871527322666230418114446 (2024).
Petersen, M. et al., Brain imaging and neuropsychological assessment of individuals recovered from a mild to moderate SARS-CoV-2 infection. Proc. Natl. Acad. Sci. 120 (22)https://doi.org/10.1073/pnas.2217232120 (2023).
Auerbach, B. D., Rodrigues, P. V. & Salvi, R. J. Central gain control in tinnitus and hyperacusis. Front. Neurol. 5. https://doi.org/10.3389/fneur.2014.00206 (2014).
Noreña, A. J. An integrative model of tinnitus based on a central gain controlling neural sensitivity. Neurosci. Biobehav. Rev. 35 (5), 1089–1109 (2011).
Sedley, W. Tinnitus: Does gain explain? Neuroscience 407, 213–228 (2019).
Ting, K-C., Chang, C-C., Huang, C-Y., Chen, Y-F. & Cheng, Y-F. Are electrocochleographic changes an early sign of cochlear synaptopathy? A prospective study in tinnitus patients with normal hearing. Diagnostics 12 (4), 802. https://doi.org/10.3390/diagnostics12040802 (2022).
Shim, H. J., An, Y. H., Kim, D. H., Yoon, J. E. & Yoon, J. H. Comparisons of auditory brainstem response and sound level tolerance in tinnitus ears and non-tinnitus ears in unilateral tinnitus patients with normal audiograms. PLoS ONE. 12 (12), e0189157. https://doi.org/10.1371/journal.pone.0189157 (2017).
Hackenberg, B. et al. Tinnitus and its relation to depression, anxiety, and stress—a population-based cohort study. J. Clin. Med. 12 (3), 1169 (2023).
Searchfield, G. D. Tinnitus what and where: An ecological framework. Front. Neurol. 5, 122255 (2014).
Colagrosso, E. M., Fournier, P., Fitzpatrick, E. M. & Hébert, S. A qualitative study on factors modulating tinnitus experience. Ear Hear. 40 (3), 636–644 (2019).
Newman, C. W., Jacobson, G. P. & Spitzer, J. B. Development of the tinnitus handicap inventory. Arch. Otolaryngol.–Head Neck Surg. 122 (2), 143–148 (1996).
Song, Z. et al. Tinnitus is associated with extended high-frequency hearing loss and hidden high-frequency damage in young patients. Otol. Neurotol. 42 (3), 377–383 (2021).
Jafari, Z., Baguley, D., Kolb, B. E. & Mohajerani, M. H. A systematic review and meta-analysis of extended high-frequency hearing thresholds in tinnitus with a normal audiogram. Ear Hear. 43 (6), 1643–1652 (2022).
Ahmed, S. H. et al. SARS-CoV-2 vaccine-associated-tinnitus: A review. Ann. Med. Surg. 75, 103293 (2022).