Stock Ticker

Acute LPS exposure enhances susceptibility to peripheral prion infection

  • Legname, G. et al. Synthetic mammalian prions. Science 305, 673–676. https://doi.org/10.1126/science.1100195 (2004).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang, F., Wang, X., Yuan, C. G. & Ma, J. Generating a prion with bacterially expressed Recombinant prion protein. Science 327, 1132–1135. https://doi.org/10.1126/science.1183748 (2010).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Mabbott, N. How do PrPSc prions spread between and within host species, and within hosts? Pathogens. https://doi.org/10.3390/pathogens6040060 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sigurdson, C. J. et al. Oral transmission and early lymphoid tropism of chronic wasting disease PrPres in mule deer fawns (Odocoileus hemionus). J. Gen. Virol. 80, 2757–2764. https://doi.org/10.1099/0022-1317-80-10-2757 (1999).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Brown, K. L. et al. Scrapie replication in lymphoid tissues depends on PrP-expressing follicular dendritic cells. Nat. Med. 5, 1308–1312. https://doi.org/10.1038/15264 (1999).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Andreoletti, O. et al. Early accumulation of PrPSc in gut-associated lymphoid and nervous tissues of susceptible sheep from a Romanov flock with natural scrapie. J. Gen. Virol. 81, 3115–3126. https://doi.org/10.1099/0022-1317-81-12-3115 (2000).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Heggebø, R. et al. Distribution of prion protein in the ileal Peyer’s patch of scrapie-free lambs and lambs naturally and experimentally exposed to the scrapie agent. J. Gen. Virol. 81, 2327–2337. https://doi.org/10.1099/0022-1317-81-9-2327 (2000).

    Article 
    PubMed 
    MATH 

    Google Scholar
     

  • van Keulen, L. J. M., Schreuder, B. E. G., Vromans, M. E. W., Langeveld, J. P. M. & Smits, M. A. Scrapie-associated prion protein in the gastro-intestinal tract of sheep with scrapie. J. Comp. Pathol. 121, 55–63. https://doi.org/10.1053/jcpa.1998.0300 (1999).

    Article 
    PubMed 

    Google Scholar
     

  • Fraser, H. & Dickinson, A. G. Pathogenesis of scrapie in the mouse: the role of the spleen. Nature 226, 462–463. https://doi.org/10.1038/226462a0 (1970).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Fraser, H. & Dickinson, A. G. Studies on the lymphoreticular system in the pathogenesis of Scrapie: the role of spleen and thymus. J. Comp. Pathol. 88, 563–573. https://doi.org/10.1016/0021-9975(78)90010-5 (1978).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Montrasio, F. et al. Impaired prion replication in spleens of mice lacking functional follicular dendritic cells. Science 288, 1257–1259. https://doi.org/10.1126/science.288.5469.1257 (2000).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Glaysher, B. R. & Mabbott, N. A. Role of the GALT in scrapie agent neuroinvasion from the intestine. J. Immunol. 178, 3757–3766. https://doi.org/10.4049/jimmunol.178.6.3757 (2007).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Glaysher, B. R. & Mabbott, N. A. Role of the draining lymph node in scrapie agent transmission from the skin. Immunol. Lett. 109, 64–71. https://doi.org/10.1016/j.imlet.2007.01.003 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Donaldson, D. S., Else, K. J. & Mabbott, N. A. The gut-associated lymphoid tissues in the small intestine, not the large intestine, play a major role in oral prion disease pathogenesis. J. Virol. 15, 9532–9547. https://doi.org/10.1128/JVI.01544-15 (2015).

    Article 

    Google Scholar
     

  • McCulloch, L. et al. Follicular dendritic cell-specific prion protein (PrPC) expression alone is sufficient to sustain prion infection in the spleen. PLoS Pathog. 7, e1002402. https://doi.org/10.1371/journal.ppat.1002402 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Mabbott, N. A., Bradford, B. M., Pal, R., Young, R. & donaldson, D. S. The effects of immune system modulation on prion disease susceptibility and pathogenesis. Int. J. Mol. Sci. 21, 7299. https://doi.org/10.3390/ijms21197299 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Donaldson, D. S. et al. M cell depletion blocks oral prion disease pathogenesis. Mucosal Immunol. 5, 216–225. https://doi.org/10.1038/mi.2011.68 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Donaldson, D. S., Sehgal, A., Rios, D., Williams, I. R. & Mabbott, N. A. Increased abundance of M cells in the gut epithelium dramatically enhances oral prion disease susceptibility. PLoS Pathog. 12, e1006075. https://doi.org/10.1371/journal.ppat.1006075 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kobayashi, A. et al. The functional maturation of M cells is dramatically reduced in the Peyer’s patches of aged mice. Mucosal Immunol. 6, 1027–1037. https://doi.org/10.1038/mi.2012.141 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Brown, K. L., Wathne, G. J., Sales, J., Bruce, M. E. & Mabbott, N. A. The effects of host age on follicular dendritic cell status dramatically impair scrapie agent neuroinvasion in aged mice. J. Immunol. 183, 5199–5207. https://doi.org/10.4049/jimmunol.0802695 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chapman, H. A., Vavrin, Z. & Hibbs, J. B. Coordinate expression of macrophage procoagulant and fibrinolytic activity in vitro and in vivo. J. Immunol. 130, 261–266. https://doi.org/10.4049/jimmunol.130.1.261 (1983).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Barth, M. W., Hendrzak, J. A., Melnicoff, M. J. & Morahan, P. S. Review of the macrophage dissapearance reaction. J. Leukoc. Biol. 57, 361–367. https://doi.org/10.1002/jlb.57.3.361 (1995).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Vega-Perez, A. et al. Resident macrophage-dependent immune cell scaffolds drive anti-bacterial defense in the peritoneal cavity. Immunity 54, 2578–2594. https://doi.org/10.1016/j.immuni.2021.10.007 (2021).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Carp, R. I. & Callahan, S. M. In vitro interaction of scrapie agent and mouse peritoneal macrophages. Intervirology 16, 8–13. https://doi.org/10.1159/000149241 (1981).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Carp, R. I. & Callahan, S. M. Effect of mouse peritoneal macrophages on scrapie infectivity during extended in vitro incubation. Intervirology 17, 201–207. https://doi.org/10.1159/000149289 (1982).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Maignien, T. et al. Role of gut macrophages in mice orally contaminated with scrapie or BSE. Int. J. Pharm. 298, 293–304. https://doi.org/10.1016/j.ijpharm.2005.02.042 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wathne, G. J. & Mabbott, N. A. The diverse roles of mononuclear phagocytes in prion disease pathogenesis. Prion 6, 124–133. https://doi.org/10.4161/pri.18853 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sassa, Y., Yamasaki, S., Horiuchi, M., Inoshima, Y. & Ishiguro, N. The effects of lysosomal and proteasomal inhibitors on abnormal forms of prion protein degradation. Microbiol. Immunol. 54, 763–768. https://doi.org/10.1111/j.1348-0421.2010.00272.x (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Fraser, H. & Dickinson, A. G. Targeting of scrapie lesions and spread of agent via the retino-tectal projection. Brain Res. 346, 31–41. https://doi.org/10.1016/0006-8993(85)91091-1 (1985).

    Article 
    MATH 

    Google Scholar
     

  • Farquhar, C. F. & Dickinson, A. G. Prolongation of scrapie incubation period by an injection of dextran sulphate 500 within the month before or after infection. J. Gen. Virol. 67, 463–473. https://doi.org/10.1099/0022-1317-67-3-463 (1986).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Moore, R. C. et al. Mice with gene targetted prion protein alterations show that Prnp, Sinc and Prni are congruent. Nat. Genet. 18, 118–125. https://doi.org/10.1038/ng0298-118 (1998).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Pal, R., Bradford, B. M. & Mabbott, N. A. Innate immune tolerance in microglia does not impact on central nervous system prion disease. Front. Cell. Neurosci. 16, 918883. https://doi.org/10.3389/fncel.2022.91888 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fraser, H. & Dickinson, A. G. Scrapie in mice. Agent-strain differences in the distribution and intensity of grey matter vacuolation. J. Comp. Pathol. 83, 29–40. https://doi.org/10.1016/0021-9975(73)90024-8 (1973).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Kilkenny, C., Browne, W. J., Cuthill, I. C., Emerson, M. & Altman, D. G. Improving bioscience research reporting: the ARRIVE guidelines for reporting animal research. PLoS Biol. 8, e1000412. https://doi.org/10.1371/journal.pbio.1000412 (2010).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • McCutcheon, S. et al. Prion protein-specific antibodies that detect multiple TSE agents with high sensitivity. PLoS One. 9, e91143. https://doi.org/10.1371/journal.pone.0091143 (2014).

    Article 
    ADS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Farquhar, C. F., Somerville, R. A. & Ritchie, L. A. Post-mortem immunodiagnosis of scrapie and bovine spongiform encephalopathy. J. Virol. Methods. 24, 215–222. https://doi.org/10.1016/0166-0934(89)90023-2 (1989).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Schulz-Schaeffer, W. J. et al. The paraffin-embedded tissue blot detects PrPsc early in the incubation time in prion diseases. Am. J. Pathol. 156, 51–56. https://doi.org/10.1016/S0002-9440(10)64705-0 (2000).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Thomas, C. M. et al. Development of a sensitive real-time quaking-induced conversion (RT-QuIC) assay for application in prion-infected blood. PLoS One. 18, e0293845. https://doi.org/10.1371/journal.pone.0293845 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Louwe, P. A. et al. Recruited macrophages that colonize the postinflammatory peritoneal niche convert into functionally divergent resident cells. Nat. Commun. 12, 1770. https://doi.org/10.1038/s41467-021-21778-0 (2021).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Mabbott, N. A., Mackay, F., Minns, F. & Bruce, M. E. Temporary inactivation of follicular dendritic cells delays neuroinvasion of scrapie. Nat. Med. 6, 719–720. https://doi.org/10.1038/77401 (2000).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bain, C. C. et al. Long-lived self-renewing bone marrow-derived macrophages displace embryo-derived cells to inhabit adult serous cavities. Nat. Commun. 7, 11852. https://doi.org/10.1038/ncomms11852 (2016).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Bain, C. C. et al. CD11c identifies microbiota and EGR2-dependent MHCII + serous cavity macrophages with sexually dimorphic fate in mice. Eur. J. Immunol. 52, 1243–1257. https://doi.org/10.1002/eji.202149756 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liao, C. T. et al. IL-10 differentially controls the infiltration of inflammatory macrophages and antigen-presenting cells during inflammation. Eur. J. Immunol. 46, 2222–2232. https://doi.org/10.1002/eji.201646528 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • McCulloch, L., Brown, K. L. & Mabbott, N. A. Ablation of the cellular prion protein, PrPC, specifcally on follicular dendritic cells has no effect on their maturation or function. Immunology 138, 246–257. https://doi.org/10.1111/imm.12031 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mabbott, N. A., Young, J., McConnell, I. & Bruce, M. E. Follicular dendritic cell dedifferentiation by treatment with an inhibitor of the lymphotoxin pathway dramatically reduces scrapie susceptibility. J. Virol. 77, 6845–6854. https://doi.org/10.1128/JVI.77.12.6845-6854.2003 (2003).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bremer, J. et al. Repetitive immunization enhances the susceptibility of mice to peripherally administered prions. PLoS One. 4, e7160. https://doi.org/10.1371/journal.pone.0007160 (2009).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Montrasio, F. et al. B-lymphocyte-restricted expression of the prion protein does not enable prion replication in PrP knockout mice. Procedings Natl. Acad. Sci. USA. 98, 4034–4037. https://doi.org/10.1073/pnas.051609398 (2001).

    ADS 
    CAS 
    MATH 

    Google Scholar
     

  • Raeber, A. J. et al. Ectopic expression of prion protein (PrP) in T lymphocytes or hepatocytes of PrP knockout mice is insufficient to sustain prion replication. Proc. Natl. Acad. Sci. USA 96, 3987–3992. https://doi.org/10.1073/pnas.96.7.3987 (1999).

  • Gilch, S. et al. CpG and LPS can interfere negatively with prion clearance in macrophage and microglial cells. FEBS J. 274, 5834–5844. https://doi.org/10.1111/j.1742-4658.2007.06105.x (2007).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Saleem, F. et al. Lipopolysaccharide induced conversion of Recombinant prion protein. Prion 8, 221–223. https://doi.org/10.4161/pri.28939 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Michel, B. et al. Incunabular immunological events in prion trafficking. Sci. Rep. 2, 440. https://doi.org/10.1038/srep00440 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Beringue, V. et al. Role of spleen macrophages in the clearance of scrapie agent early in pathogenesis. J. Pathol. 190, 495–502. https://doi.org/10.1002/(SICI)1096-9896(200003)190:4<495::AID-PATH535>3.0.CO;2-T. (2000).

  • Davies, L. C. et al. Distinct bone marrow-derived and tissue-resident macrophage lineages proliferate at key stages during inflammation. Nat. Commun. 4, 1886. https://doi.org/10.1038/ncomms2877 (2013).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Davies, L. C. et al. A quantifiable proliferative burst of tissue macrophages restores homeostatic macrophage populations after acute inflammation. Eur. J. Immunol. 41, 2155–2164. https://doi.org/10.1002/eji.201141817 (2011).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Liddelow, S. A. et al. Neurotoxic reactive astrocytes are induced by activated microglia. Nature 541, 481–487. https://doi.org/10.1038/nature21029 (2017).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wendeln, A. C. et al. Innate immune memory in the brain shapes neurological disease hallmarks. Nature 556, 332–338. https://doi.org/10.1038/s41586-018-0023-4 (2018).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mildenberger, W., Stifter, S. A. & Greter, M. Diversity and function of brain-associated macrophages. Curr. Op Immunol. 76, 102181. https://doi.org/10.1016/j.coi.2022.102181 (2022).

    Article 
    CAS 
    MATH 

    Google Scholar
     

  • Source link

    Get RawNews Daily

    Stay informed with our RawNews daily newsletter email

    Here are the updated forecasts for Nvidia shares out to 2028

    Marlins To Carry Rule 5 Picks Liam Hicks On Opening Day Roster

    North Carolina vs. Ole Miss Odds, Prediction, & Best Bets

    St. John’s Championship Would Make Rick Pitino Greatest Coach Ever, Dan Dakich Says