Grizzle, W. E., Bell, W. C. & Sexton, K. C. Issues in collecting, processing and storing human tissues and associated information to support biomedical research. Cancer Biomarkers: Sect. A Dis. markers 9, 531 (2010).
Murray, B. O. et al. Recurrent urinary tract infection: a mystery in search of better model systems. Front. Cell. Infect. Microbiol. 11, 691210 (2021).
Frangogiannis, N. G. Why animal model studies are lost in translation. J. Cardiovasc. Aging 2, 22 (2022).
Würbel, H. More than 3Rs: the importance of scientific validity for harm-benefit analysis of animal research. Lab. Anim. 46, 164–166 (2017).
Vitale, A. & Ricceri, L. The principle of the 3Rs between aspiration and reality. Front. Physiol. 13, 914939 (2022).
Dick, S. A. et al. Three tissue resident macrophage subsets coexist across organs with conserved origins and life cycles. Sci. Immunol. 7, eabf7777 (2022).
Sharma, K. et al. Early invasion of the bladder wall by solitary bacteria protects UPEC from antibiotics and neutrophil swarms in an organoid model. Cell Rep. 36, 109351 (2021).
Horsley, H., Dharmasena, D., Malone-Lee, J. & Rohn, J. L. A urine-dependent human urothelial organoid offers a potential alternative to rodent models of infection. Sci. Rep. 8, 1238 (2018).
Mullenders, J. et al. Mouse and human urothelial cancer organoids: a tool for bladder cancer research. Proc. Natl Acad. Sci. USA 116, 4567–4574 (2019).
Flores, C. et al. A human urothelial microtissue model reveals shared colonization and survival strategies between uropathogens and commensals. Sci. Adv. 9, eadi9834 (2023).
Sharma, K. et al. Dynamic persistence of UPEC intracellular bacterial communities in a human bladder-chip model of urinary tract infection. eLife 10, e66481 (2021).
Köhn, R.-M. et al. A simple ex vivo bladder infection model permits study of host-pathogen interactions in UTI. Preprint at bioRxiv https://doi.org/10.1101/2024.12.23.630047 (2024).
Newman, J. & Antonakopoulos, G. N. The fine structure of the human fetal urinary bladder. Development and maturation. A light, transmission and scanning electron microscopic study. J. Anat. 166, 135–150 (1989).
Shen, J. et al. Macroscopic whole-mounts of the developing human fetal urogenital-genital tract: indifferent stage to male and female differentiation. Differentiation 103, 5–13 (2018).
Koerner, I. et al. Gender specific chronological and morphometric assessment of fetal bladder wall development. J. Urol. 176, 2674–2678 (2006).
Hakenberg, O. W., Linne, C., Manseck, A. & Wirth, M. P. Bladder wall thickness in normal adults and men with mild lower urinary tract symptoms and benign prostatic enlargement. Neurourol. Urodyn. 19, 585–593 (2000).
Lu, M., Zhu, K., Schulam, P. G. & Chai, T. C. A non-enzymatic method for dissection of mouse bladder urothelial tissue. Nat. Protoc. 14, 1280–1292 (2019).
Bolla, S. R., Odeluga, N., Amraei, R. & Jetti, R. in StatPearls (StatPearls, 2024).
Ajalloueian, F., Lemon, G., Hilborn, J., Chronakis, I. S. & Fossum, M. Bladder biomechanics and the use of scaffolds for regenerative medicine in the urinary bladder. Nat. Rev. Urol. 15, 155–174 (2018).
Andersson, K.-E. & McCloskey, K. D. Lamina propria: the functional center of the bladder? Neurourol. Urodyn. 33, 9–16 (2014).
Wang, J. et al. Polyploid superficial cells that maintain the urothelial barrier are produced via incomplete cytokinesis and endoreplication. Cell Rep. 25, 464–477.e4 (2018).
Jafari, N. V. & Rohn, J. L. The urothelium: a multi-faceted barrier against a harsh environment. Mucosal Immunol. 15, 1127–1142 (2022).
Jost, S. P., Gosling, J. A. & Dixon, J. S. The morphology of normal human bladder urothelium. J. Anat. 167, 103–115 (1989).
Petracchini, S. et al. Optineurin links Hace1-dependent Rac ubiquitylation to integrin-mediated mechanotransduction to control bacterial invasion and cell division. Nat. Commun. 13, 6059 (2022).
Yu, W. & Hill, W. G. Defining protein expression in the urothelium: a problem of more than transitional interest. Am. J. Physiol. Renal Physiol 301, F932–F942 (2011).
Acharya, P. et al. Distribution of the tight junction proteins ZO-1, occludin, and claudin-4, -8, and -12 in bladder epithelium. Am. J. Physiol. Renal Physiol 287, F305–F318 (2004).
Smith, N. J. et al. The human urothelial tight junction: claudin 3 and the ZO-1α+ switch. Bladder 2, e9 (2015).
Hickling, D. R., Sun, T.-T. & Wu, X.-R. Anatomy and physiology of the urinary tract: relation to host defense and microbial infection. Microbiol. Spectr. 3, https://doi.org/10.1128/microbiolspec.UTI-0016-2012 (2015).
Hurst, R. E. Structure, function, and pathology of proteoglycans and glycosaminoglycans in the urinary tract. World J. Urol. 12, 3–10 (1994).
Sihra, N., Goodman, A., Zakri, R., Sahai, A. & Malde, S. Nonantibiotic prevention and management of recurrent urinary tract infection. Nat. Rev. Urol. 15, 750–776 (2018).
Cornish, J., Lecamwasam, J. P., Harrison, G., Vanderwee, M. A. & Miller, T. E. Host defence mechanisms in the bladder. II. Disruption of the layer of mucus. Br. J. Exp. Pathol. 69, 759–770 (1988).
Parsons, C. L., Mulholland, S. G. & Anwar, H. Antibacterial activity of bladder surface mucin duplicated by exogenous glycosaminoglycan (heparin). Infect. Immun. 24, 552–557 (1979).
Bassi, P. F., Costantini, E., Foley, S. & Palea, S. Glycosaminoglycan therapy for bladder diseases: emerging new treatments. Eur. Urol. Suppl. 10, 451–459 (2011).
Parsons, C. L. & Mulholland, S. G. Bladder surface mucin. Its antibacterial effect against various bacterial species. Am. J. Pathol. 93, 423–432 (1978).
Parsons, C. L., Greenspan, C., Moore, S. W. & Mulholland, S. G. Role of surface mucin in primary antibacterial defense of bladder. Urology 9, 48–52 (1977).
Parsons, C. L., Stauffer, C. W. & Schmidt, J. D. Reversible inactivation of bladder surface glycosaminoglycan antibacterial activity by protamine sulfate. Infect. Immun. 56, 1341–1343 (1988).
Madersbacher, H., van Ophoven, A. & van Kerrebroeck, P. E. V. A. GAG layer replenishment therapy for chronic forms of cystitis with intravesical glycosaminoglycans — a review. Neurourol. Urodyn. 32, 9–18 (2013).
Wyndaele, J. J. J. et al. GAG replenishment therapy for bladder pain syndrome/interstitial cystitis. Neurourol. Urodyn. 38, 535–544 (2019).
Kurth, K. H. & Lowell Parsons, C. The interstitial cystitis syndrome: intravesical and oral treatment. Eur. Urol. Suppl. 2, 2–9 (2003).
Wu, X.-R., Kong, X.-P., Pellicer, A., Kreibich, G. & Sun, T.-T. Uroplakins in urothelial biology, function, and disease. Kidney Int. 75, 1153–1165 (2009).
Jafari, N. V. & Rohn, J. L. An immunoresponsive three-dimensional urine-tolerant human urothelial model to study urinary tract infection. Front. Cell Infect. Microbiol. 13, 1128132 (2023).
Mora-Bau, G. et al. Macrophages subvert adaptive immunity to urinary tract infection. PLoS Pathog. 11, e1005044 (2015).
Ingersoll, M. A. & Albert, M. L. From infection to immunotherapy: host immune responses to bacteria at the bladder mucosa. Mucosal Immunol. 6, 1041–1053 (2013).
Lacerda Mariano, L. & Ingersoll, M. A. Bladder resident macrophages: mucosal sentinels. Cell Immunol. 330, 136–141 (2018).
Lacerda Mariano, L. et al. Functionally distinct resident macrophage subsets differentially shape responses to infection in the bladder. Sci. Adv. 6, eabc5739 (2020).
Zychlinsky Scharff, A. et al. Sex differences in IL-17 contribute to chronicity in male versus female urinary tract infection. JCI Insight 5, e122998 (2019). 122998.
Mosser, D. M., Hamidzadeh, K. & Goncalves, R. Macrophages and the maintenance of homeostasis. Cell Mol. Immunol. 18, 579–587 (2021).
Wynn, T. A., Chawla, A. & Pollard, J. W. Macrophage biology in development, homeostasis and disease. Nature 496, 445–455 (2013).
Bain, C. C. & MacDonald, A. S. The impact of the lung environment on macrophage development, activation and function: diversity in the face of adversity. Mucosal Immunol. 15, 223–234 (2022).
Lacerda Mariano, L. & Ingersoll, M. A. The immune response to infection in the bladder. Nat. Rev. Urol. 17, 439–458 (2020).
Serafini-Cessi, F., Malagolini, N. & Cavallone, D. Tamm-Horsfall glycoprotein: biology and clinical relevance. Am. J. Kidney Dis. 42, 658–676 (2003).
Pak, J., Pu, Y., Zhang, Z. T., Hasty, D. L. & Wu, X. R. Tamm-Horsfall protein binds to type 1 fimbriated Escherichia coli and prevents E. coli from binding to uroplakin Ia and Ib receptors. J. Biol. Chem. 276, 9924–9930 (2001).
Mo, B., Scharf, B., Gutheil, C., Letzel, M. C. & Hensel, A. Tamm–Horsfall protein in humane urine: sex-dependent differences in the excretion and N-glycosylation pattern. Sci. Rep. 13, 17815 (2023).
Floege, J., Böddeker, M., Stolte, H. & Koch, K. M. Urinary IgA, secretory IgA and secretory component in women with recurrent urinary tract infections. Nephron 56, 50–55 (1990).
Ligon, M. M., Joshi, C. S., Fashemi, B. E., Salazar, A. M. & Mysorekar, I. U. Effects of aging on urinary tract epithelial homeostasis and immunity. Dev. Biol. 493, 29–39 (2023).
De Nisco, N. J. et al. Direct detection of tissue-resident bacteria and chronic inflammation in the bladder wall of postmenopausal women with recurrent urinary tract infection. J. Mol. Biol. 431, 4368–4379 (2019).
Behzadi, E. & Behzadi, P. The role of toll-like receptors (TLRs) in urinary tract infections (UTIs). Cent. European J. Urol. 69, 404–410 (2016).
Pettenati, C. & Ingersoll, M. A. Mechanisms of BCG immunotherapy and its outlook for bladder cancer. Nat. Rev. Urol. 15, 615–625 (2018).
Deltourbe, L., Lacerda Mariano, L., Hreha, T. N., Hunstad, D. A. & Ingersoll, M. A. The impact of biological sex on diseases of the urinary tract. Mucosal Immunol. 15, 857–866 (2022).
Rousseau, M., Lacerda Mariano, L., Canton, T. & Ingersoll, M. A. Tissue-resident memory T cells mediate mucosal immunity to recurrent urinary tract infection. Sci. Immunol. 8, eabn4332 (2023).
Rousseau, M. et al. Identification of sex differences in tumor-specific T cell infiltration in bladder tumor-bearing mice treated with BCG immunotherapy. Bladder Cancer 6, 507–524 (2020).
Hang, L., Wullt, B., Shen, Z., Karpman, D. & Svanborg, C. Cytokine repertoire of epithelial cells lining the human urinary tract. J. Urol. 159, 2185–2192 (1998).
Godaly, G., Hang, L., Frendéus, B. & Svanborg, C. Transepithelial neutrophil migration is CXCR1 dependent in vitro and is defective in IL-8 receptor knockout mice. J. Immunol. 165, 5287–5294 (2000).
Hang, L. et al. Macrophage inflammatory protein-2 is required for neutrophil passage across the epithelial barrier of the infected urinary tract. J. Immunol. 162, 3037–3044 (1999).
Lewis, D. A. et al. The human urinary microbiome; bacterial DNA in voided urine of asymptomatic adults. Front. Cell Infect. Microbiol. 3, 41 (2013).
Gottschick, C. et al. The urinary microbiota of men and women and its changes in women during bacterial vaginosis and antibiotic treatment. Microbiome 5, 99 (2017).
Saenz, C. N., Neugent, M. L. & De Nisco, N. J. The human urinary microbiome and its potential role in urinary tract infections. Eur. Urol. Focus 10, 889–892 (2025).
Roje, B. et al. Microbiota alters urinary bladder weight and gene expression. Microorganisms 8, 421 (2020).
Whiteside, S. A., Razvi, H., Dave, S., Reid, G. & Burton, J. P. The microbiome of the urinary tract — a role beyond infection. Nat. Rev. Urol. 12, 81–90 (2015).
Jahromi, M. S., Mure, A. & Gomez, C. S. UTIs in patients with neurogenic bladder. Curr. Urol. Rep. 15, 433 (2014).
de Medeiros Junior, W. L. G. et al. Urinary tract infection in patients with multiple sclerosis: an overview. Mult. Scler. Relat. Disord. 46, 102462 (2020).
Chaudhry, R. et al. Risk factors associated with recurrent urinary tract infection in neurogenic bladders managed by clean intermittent catheterization. Urology 102, 213–218 (2017).
Balsara, Z. R. et al. Enhanced susceptibility to urinary tract infection in the spinal cord-injured host with neurogenic bladder. Infect. Immun. 81, 3018–3026 (2013).
Jones-Freeman, B. et al. The microbiome and host mucosal interactions in urinary tract diseases. Mucosal Immunol. 14, 779–792 (2021).
Komesu, Y. M. et al. Defining the relationship between vaginal and urinary microbiomes. Am. J. Obstet. Gynecol. 222, 154.e1–154.e10 (2020).
Gilbert, N. M., O’Brien, V. P. & Lewis, A. L. Transient microbiota exposures activate dormant Escherichia coli infection in the bladder and drive severe outcomes of recurrent disease. PLoS Pathog. 13, e1006238 (2017).
Dalghi, M. G., Montalbetti, N., Carattino, M. D. & Apodaca, G. The urothelium: life in a liquid environment. Physiol. Rev. 100, 1621–1705 (2020).
Aitekenov, S., Gaipov, A. & Bukasov, R. Review: detection and quantification of proteins in human urine. Talanta 223, 121718 (2021).
Sahu, S., John, J. & Augusty, A. Estimation of 24 h urine protein versus spot urine protein creatinine ratio in patients with kidney disease. Indian. J. Clin. Biochem. 37, 361–364 (2022).
Decramer, S. et al. Urine in clinical proteomics. Mol. Cell Proteom. 7, 1850–1862 (2008).
Nolen, B. M. et al. An extensive targeted proteomic analysis of disease-related protein biomarkers in urine from healthy donors. PLoS ONE 8, e63368 (2013).
Zhao, M. et al. A comprehensive analysis and annotation of human normal urinary proteome. Sci. Rep. 7, 3024 (2017).
Suzuki, O., Koura, M., Uchio-Yamada, K. & Sasaki, M. Urinary protein analysis in mice lacking major urinary proteins. Exp. Anim. 70, 406–411 (2021).
Wu, J. & Gao, Y. Physiological conditions can be reflected in human urine proteome and metabolome. Expert. Rev. Proteom. 12, 623–636 (2015).
Fan, S. et al. Sex-associated differences in baseline urinary metabolites of healthy adults. Sci. Rep. 8, 11883 (2018).
Bechtold, W. E., Strunk, M. R., Chang, I. Y., Ward, J. B. & Henderson, R. F. Species differences in urinary butadiene metabolites: comparisons of metabolite ratios between mice, rats, and humans. Toxicol. Appl. Pharmacol. 127, 44–49 (1994).
Abelson, B. et al. Sex differences in lower urinary tract biology and physiology. Biol. Sex. Differ. 9, 45 (2018).
Siroky, M. B. The aging bladder. Rev. Urol. 6, S3 (2004).
Khandelwal, P., Abraham, S. N. & Apodaca, G. Cell biology and physiology of the uroepithelium. Am. J. Physiol. Renal Physiol. 297, F1477 (2009).
Rosen, D. A., Hooton, T. M., Stamm, W. E., Humphrey, P. A. & Hultgren, S. J. Detection of intracellular bacterial communities in human urinary tract infection. PLoS Med. 4, e329 (2007).
Bowyer, G. S., Loudon, K. W., Suchanek, O. & Clatworthy, M. R. Tissue immunity in the bladder. Annu. Rev. Immunol. 40, 499–523 (2022).
Hopkins, W. J., Gendron-Fitzpatrick, A., Balish, E. & Uehling, D. T. Time course and host responses to Escherichia coli urinary tract infection in genetically distinct mouse strains. Infect. Immun. 66, 2798–2802 (1998).
Svanborg Edén, C., Briles, D., Hagberg, L., McGhee, J. & Michalec, S. Genetic factors in host resistance to urinary tract infection. Infection 12, 118–123 (1984).
Murawski, I. J. et al. The C3H/HeJ inbred mouse is a model of vesico-ureteric reflux with a susceptibility locus on chromosome 12. Kidney Int. 78, 269–278 (2010).
Hagberg, L. et al. Difference in susceptibility to Gram-negative urinary tract infection between C3H/HeJ and C3H/HeN mice. Infect. Immun. 46, 839–844 (1984).
Song, J., Bishop, B. L., Li, G., Duncan, M. J. & Abraham, S. N. TLR4 initiated and cAMP mediated abrogation of bacterial invasion of the bladder. Cell Host Microbe 1, 287–298 (2007).
Shahin, R. D., Engberg, I., Hagberg, L. & Svanborg Edén, C. Neutrophil recruitment and bacterial clearance correlated with LPS responsiveness in local Gram-negative infection. J. Immunol. 138, 3475–3480 (1987).
Logan, D. W., Marton, T. F. & Stowers, L. Species specificity in major urinary proteins by parallel evolution. PLoS ONE 3, e3280 (2008).
Aizawa, N., Homma, Y. & Igawa, Y. Influence of high fat diet feeding for 20 weeks on lower urinary tract function in mice. Low. Urin. Tract. Symptoms 5, 101–108 (2013).
Huang Foen Chung, J. W. N. C. & van Mastrigt, R. Age and volume dependent normal frequency volume charts for healthy males. J. Urol. 182, 210–214 (2009).
Yang, P. J., Pham, J., Choo, J. & Hu, D. L. Duration of urination does not change with body size. Proc. Natl Acad. Sci. 111, 11932–11937 (2014).
Barber, A. E., Norton, J. P., Wiles, T. J. & Mulvey, M. A. Strengths and limitations of model systems for the study of urinary tract infections and related pathologies. Microbiol. Mol. Biol. Rev. 80, 351–367 (2016).
Brodin, P. & Davis, M. M. Human immune system variation. Nat. Rev. Immunol. 17, 21–29 (2017).
Eto, D. S., Sundsbak, J. L. & Mulvey, M. A. Actin-gated intracellular growth and resurgence of uropathogenic Escherichia coli. Cell. Microbiol. 8, 704–717 (2006).
Lüthje, P. et al. Estrogen supports urothelial defense mechanisms. Sci. Transl. Med. 5, 190ra80–190ra80 (2013).
Klumpp, D. J. et al. Uropathogenic Escherichia coli induces extrinsic and intrinsic cascades to initiate urothelial apoptosis. Infect. Immun. 74, 5106–5113 (2006).
Berry, R. E., Klumpp, D. J. & Schaeffer, A. J. Urothelial cultures support intracellular bacterial community formation by uropathogenic Escherichia coli. Infect. Immun. 77, 2762–2772 (2009).
Thumbikat, P. et al. Bacteria-induced uroplakin signaling mediates bladder response to infection. PLoS Pathog. 5, e1000415 (2009).
Iosifidis, G. & Duggin, I. G. Distinct morphological fates of uropathogenic Escherichia coli intracellular bacterial communities: dependency on urine composition and pH. Infect. Immun. 88, e00884–19 (2020).
Söderström, B., Pittorino, M. J., Daley, D. O. & Duggin, I. G. Assembly dynamics of FtsZ and DamX during infection-related filamentation and division in uropathogenic E. coli. Nat. Commun. 13, 3648 (2022).
Pokhrel, A., Costas, A., Pittorino, M., Duggin, I. & Söderström, B. E. coli division machinery drives cocci development inside host cells. Preprint at bioRxiv https://doi.org/10.1101/2024.04.08.588611 (2024).
Andersen, T. E. et al. Escherichia coli uropathogenesis in vitro: invasion, cellular escape, and secondary infection analyzed in a human bladder cell infection model. Infect. Immun. 80, 1858–1867 (2012).
Klumpp, D. J. et al. Uropathogenic Escherichia coli potentiates type 1 pilus-induced apoptosis by suppressing NF-κB. Infect. Immun. 69, 6689–6695 (2001).
Georgopoulos, N. T. et al. Immortalisation of normal human urothelial cells compromises differentiation capacity. Eur. Urol. 60, 141–149 (2011).
Belik, R. et al. Improvements in culturing exfoliated urothelial cells in vitro from human urine. J. Toxicol. Env. Health A 71, 923–929 (2008).
Zalewska-Piątek, B. et al. A shear stress micromodel of urinary tract infection by the Escherichia coli producing Dr adhesin. PLoS Pathog. 16, e1008247 (2020).
Wieser, A., Guggenberger, C., Pritsch, M., Heesemann, J. & Schubert, S. A novel ex vivo set-up for dynamic long-term characterization of processes on mucosal interfaces by confocal imaging and simultaneous cytokine measurements. Cell. Microbiol. 13, 742–751 (2011).
Klein, K., Palarasah, Y., Kolmos, H. J., Møller-Jensen, J. & Andersen, T. E. Quantification of filamentation by uropathogenic Escherichia coli during experimental bladder cell infection by using semi-automated image analysis. J. Microbiol. Methods 109, 110–116 (2015).
Kim, E. et al. Creation of bladder assembloids mimicking tissue regeneration and cancer. Nature 588, 664–669 (2020).
Strandgaard, T. et al. Mutational analysis of field cancerization in bladder cancer. Bladder Cancer 6, 253–264 (2020).
Feenstra, T. et al. Adhesion of Escherichia coli under flow conditions reveals potential novel effects of FimH mutations. Eur. J. Clin. Microbiol. Infect. Dis. 36, 467–478 (2017).
Gadhvi, J. G. et al. Bladder-resident bacteria associated with increased risk of recurrence after electrofulguration in women with antibiotic-recalcitrant urinary tract infection. Preprint at medRxiv https://doi.org/10.1101/2024.07.03.24309902 (2024).
Kuprasertkul, A. et al. Reduced urothelial expression of uroplakin-IIIa in cystitis areas in bladders of postmenopausal women with recurrent urinary tract infections: pilot study. World J. Urol. 40, 1723–1730 (2022).
Zhao, Z. Organoids. Nat. Rev. Methods Primer 2, 1–21 (2022).
Bar-Ephraim, Y. E., Kretzschmar, K. & Clevers, H. Organoids in immunological research. Nat. Rev. Immunol. 20, 279–293 (2020).
Yui, S. Functional engraftment of colon epithelium expanded in vitro from a single adult Lgr5+ stem cell. Nat. Med. 18, 618–623 (2012).
Leung, C. M. A guide to the organ-on-a-chip. Nat. Rev. Methods Primer 2, 1–29 (2022).
Huh, D. et al. Reconstituting organ-level lung functions on a chip. Science 328, 1662–1668 (2010).
Huh, D. D. A human breathing lung-on-a-chip. Ann. Am. Thorac. Soc. 12, S42–S44 (2015).
Picollet-D’hahan, N., Zuchowska, A., Lemeunier, I. & Le Gac, S. Multiorgan-on-a-chip: a systemic approach to model and decipher inter-organ communication. Trends Biotechnol. 39, 788–810 (2021).
Novak, R. et al. Robotic fluidic coupling and interrogation of multiple vascularized organ chips. Nat. Biomed. Eng. 4, 407–420 (2020).
Tsamandouras, N. et al. Integrated gut and liver microphysiological systems for quantitative in vitro pharmacokinetic studies. AAPS J. 19, 1499–1512 (2017).
Wagner, I. et al. A dynamic multi-organ-chip for long-term cultivation and substance testing proven by 3D human liver and skin tissue co-culture. Lab Chip 13, 3538–3547 (2013).