Stock Ticker

A bladder blueprint to build better models for understanding homeostasis and disease

  • Grizzle, W. E., Bell, W. C. & Sexton, K. C. Issues in collecting, processing and storing human tissues and associated information to support biomedical research. Cancer Biomarkers: Sect. A Dis. markers 9, 531 (2010).


    Google Scholar
     

  • Murray, B. O. et al. Recurrent urinary tract infection: a mystery in search of better model systems. Front. Cell. Infect. Microbiol. 11, 691210 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Frangogiannis, N. G. Why animal model studies are lost in translation. J. Cardiovasc. Aging 2, 22 (2022).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Würbel, H. More than 3Rs: the importance of scientific validity for harm-benefit analysis of animal research. Lab. Anim. 46, 164–166 (2017).


    Google Scholar
     

  • Vitale, A. & Ricceri, L. The principle of the 3Rs between aspiration and reality. Front. Physiol. 13, 914939 (2022).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dick, S. A. et al. Three tissue resident macrophage subsets coexist across organs with conserved origins and life cycles. Sci. Immunol. 7, eabf7777 (2022).

    CAS 
    PubMed 

    Google Scholar
     

  • Sharma, K. et al. Early invasion of the bladder wall by solitary bacteria protects UPEC from antibiotics and neutrophil swarms in an organoid model. Cell Rep. 36, 109351 (2021).

    CAS 
    PubMed 

    Google Scholar
     

  • Horsley, H., Dharmasena, D., Malone-Lee, J. & Rohn, J. L. A urine-dependent human urothelial organoid offers a potential alternative to rodent models of infection. Sci. Rep. 8, 1238 (2018).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mullenders, J. et al. Mouse and human urothelial cancer organoids: a tool for bladder cancer research. Proc. Natl Acad. Sci. USA 116, 4567–4574 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Flores, C. et al. A human urothelial microtissue model reveals shared colonization and survival strategies between uropathogens and commensals. Sci. Adv. 9, eadi9834 (2023).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sharma, K. et al. Dynamic persistence of UPEC intracellular bacterial communities in a human bladder-chip model of urinary tract infection. eLife 10, e66481 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Köhn, R.-M. et al. A simple ex vivo bladder infection model permits study of host-pathogen interactions in UTI. Preprint at bioRxiv https://doi.org/10.1101/2024.12.23.630047 (2024).

  • Newman, J. & Antonakopoulos, G. N. The fine structure of the human fetal urinary bladder. Development and maturation. A light, transmission and scanning electron microscopic study. J. Anat. 166, 135–150 (1989).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shen, J. et al. Macroscopic whole-mounts of the developing human fetal urogenital-genital tract: indifferent stage to male and female differentiation. Differentiation 103, 5–13 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Koerner, I. et al. Gender specific chronological and morphometric assessment of fetal bladder wall development. J. Urol. 176, 2674–2678 (2006).

    PubMed 

    Google Scholar
     

  • Hakenberg, O. W., Linne, C., Manseck, A. & Wirth, M. P. Bladder wall thickness in normal adults and men with mild lower urinary tract symptoms and benign prostatic enlargement. Neurourol. Urodyn. 19, 585–593 (2000).

    CAS 
    PubMed 

    Google Scholar
     

  • Lu, M., Zhu, K., Schulam, P. G. & Chai, T. C. A non-enzymatic method for dissection of mouse bladder urothelial tissue. Nat. Protoc. 14, 1280–1292 (2019).

    CAS 
    PubMed 

    Google Scholar
     

  • Bolla, S. R., Odeluga, N., Amraei, R. & Jetti, R. in StatPearls (StatPearls, 2024).

  • Ajalloueian, F., Lemon, G., Hilborn, J., Chronakis, I. S. & Fossum, M. Bladder biomechanics and the use of scaffolds for regenerative medicine in the urinary bladder. Nat. Rev. Urol. 15, 155–174 (2018).

    PubMed 

    Google Scholar
     

  • Andersson, K.-E. & McCloskey, K. D. Lamina propria: the functional center of the bladder? Neurourol. Urodyn. 33, 9–16 (2014).

    PubMed 

    Google Scholar
     

  • Wang, J. et al. Polyploid superficial cells that maintain the urothelial barrier are produced via incomplete cytokinesis and endoreplication. Cell Rep. 25, 464–477.e4 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jafari, N. V. & Rohn, J. L. The urothelium: a multi-faceted barrier against a harsh environment. Mucosal Immunol. 15, 1127–1142 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jost, S. P., Gosling, J. A. & Dixon, J. S. The morphology of normal human bladder urothelium. J. Anat. 167, 103–115 (1989).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Petracchini, S. et al. Optineurin links Hace1-dependent Rac ubiquitylation to integrin-mediated mechanotransduction to control bacterial invasion and cell division. Nat. Commun. 13, 6059 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yu, W. & Hill, W. G. Defining protein expression in the urothelium: a problem of more than transitional interest. Am. J. Physiol. Renal Physiol 301, F932–F942 (2011).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Acharya, P. et al. Distribution of the tight junction proteins ZO-1, occludin, and claudin-4, -8, and -12 in bladder epithelium. Am. J. Physiol. Renal Physiol 287, F305–F318 (2004).

    CAS 
    PubMed 

    Google Scholar
     

  • Smith, N. J. et al. The human urothelial tight junction: claudin 3 and the ZO-1α+ switch. Bladder 2, e9 (2015).

    PubMed 

    Google Scholar
     

  • Hickling, D. R., Sun, T.-T. & Wu, X.-R. Anatomy and physiology of the urinary tract: relation to host defense and microbial infection. Microbiol. Spectr. 3, https://doi.org/10.1128/microbiolspec.UTI-0016-2012 (2015).

  • Hurst, R. E. Structure, function, and pathology of proteoglycans and glycosaminoglycans in the urinary tract. World J. Urol. 12, 3–10 (1994).

    CAS 
    PubMed 

    Google Scholar
     

  • Sihra, N., Goodman, A., Zakri, R., Sahai, A. & Malde, S. Nonantibiotic prevention and management of recurrent urinary tract infection. Nat. Rev. Urol. 15, 750–776 (2018).

    PubMed 

    Google Scholar
     

  • Cornish, J., Lecamwasam, J. P., Harrison, G., Vanderwee, M. A. & Miller, T. E. Host defence mechanisms in the bladder. II. Disruption of the layer of mucus. Br. J. Exp. Pathol. 69, 759–770 (1988).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Parsons, C. L., Mulholland, S. G. & Anwar, H. Antibacterial activity of bladder surface mucin duplicated by exogenous glycosaminoglycan (heparin). Infect. Immun. 24, 552–557 (1979).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bassi, P. F., Costantini, E., Foley, S. & Palea, S. Glycosaminoglycan therapy for bladder diseases: emerging new treatments. Eur. Urol. Suppl. 10, 451–459 (2011).

    CAS 

    Google Scholar
     

  • Parsons, C. L. & Mulholland, S. G. Bladder surface mucin. Its antibacterial effect against various bacterial species. Am. J. Pathol. 93, 423–432 (1978).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Parsons, C. L., Greenspan, C., Moore, S. W. & Mulholland, S. G. Role of surface mucin in primary antibacterial defense of bladder. Urology 9, 48–52 (1977).

    CAS 
    PubMed 

    Google Scholar
     

  • Parsons, C. L., Stauffer, C. W. & Schmidt, J. D. Reversible inactivation of bladder surface glycosaminoglycan antibacterial activity by protamine sulfate. Infect. Immun. 56, 1341–1343 (1988).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Madersbacher, H., van Ophoven, A. & van Kerrebroeck, P. E. V. A. GAG layer replenishment therapy for chronic forms of cystitis with intravesical glycosaminoglycans — a review. Neurourol. Urodyn. 32, 9–18 (2013).

    CAS 
    PubMed 

    Google Scholar
     

  • Wyndaele, J. J. J. et al. GAG replenishment therapy for bladder pain syndrome/interstitial cystitis. Neurourol. Urodyn. 38, 535–544 (2019).

    PubMed 

    Google Scholar
     

  • Kurth, K. H. & Lowell Parsons, C. The interstitial cystitis syndrome: intravesical and oral treatment. Eur. Urol. Suppl. 2, 2–9 (2003).


    Google Scholar
     

  • Wu, X.-R., Kong, X.-P., Pellicer, A., Kreibich, G. & Sun, T.-T. Uroplakins in urothelial biology, function, and disease. Kidney Int. 75, 1153–1165 (2009).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jafari, N. V. & Rohn, J. L. An immunoresponsive three-dimensional urine-tolerant human urothelial model to study urinary tract infection. Front. Cell Infect. Microbiol. 13, 1128132 (2023).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mora-Bau, G. et al. Macrophages subvert adaptive immunity to urinary tract infection. PLoS Pathog. 11, e1005044 (2015).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ingersoll, M. A. & Albert, M. L. From infection to immunotherapy: host immune responses to bacteria at the bladder mucosa. Mucosal Immunol. 6, 1041–1053 (2013).

    CAS 
    PubMed 

    Google Scholar
     

  • Lacerda Mariano, L. & Ingersoll, M. A. Bladder resident macrophages: mucosal sentinels. Cell Immunol. 330, 136–141 (2018).

    CAS 
    PubMed 

    Google Scholar
     

  • Lacerda Mariano, L. et al. Functionally distinct resident macrophage subsets differentially shape responses to infection in the bladder. Sci. Adv. 6, eabc5739 (2020).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zychlinsky Scharff, A. et al. Sex differences in IL-17 contribute to chronicity in male versus female urinary tract infection. JCI Insight 5, e122998 (2019). 122998.

    PubMed 

    Google Scholar
     

  • Mosser, D. M., Hamidzadeh, K. & Goncalves, R. Macrophages and the maintenance of homeostasis. Cell Mol. Immunol. 18, 579–587 (2021).

    CAS 
    PubMed 

    Google Scholar
     

  • Wynn, T. A., Chawla, A. & Pollard, J. W. Macrophage biology in development, homeostasis and disease. Nature 496, 445–455 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bain, C. C. & MacDonald, A. S. The impact of the lung environment on macrophage development, activation and function: diversity in the face of adversity. Mucosal Immunol. 15, 223–234 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lacerda Mariano, L. & Ingersoll, M. A. The immune response to infection in the bladder. Nat. Rev. Urol. 17, 439–458 (2020).

    PubMed 

    Google Scholar
     

  • Serafini-Cessi, F., Malagolini, N. & Cavallone, D. Tamm-Horsfall glycoprotein: biology and clinical relevance. Am. J. Kidney Dis. 42, 658–676 (2003).

    CAS 
    PubMed 

    Google Scholar
     

  • Pak, J., Pu, Y., Zhang, Z. T., Hasty, D. L. & Wu, X. R. Tamm-Horsfall protein binds to type 1 fimbriated Escherichia coli and prevents E. coli from binding to uroplakin Ia and Ib receptors. J. Biol. Chem. 276, 9924–9930 (2001).

    CAS 
    PubMed 

    Google Scholar
     

  • Mo, B., Scharf, B., Gutheil, C., Letzel, M. C. & Hensel, A. Tamm–Horsfall protein in humane urine: sex-dependent differences in the excretion and N-glycosylation pattern. Sci. Rep. 13, 17815 (2023).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Floege, J., Böddeker, M., Stolte, H. & Koch, K. M. Urinary IgA, secretory IgA and secretory component in women with recurrent urinary tract infections. Nephron 56, 50–55 (1990).

    CAS 
    PubMed 

    Google Scholar
     

  • Ligon, M. M., Joshi, C. S., Fashemi, B. E., Salazar, A. M. & Mysorekar, I. U. Effects of aging on urinary tract epithelial homeostasis and immunity. Dev. Biol. 493, 29–39 (2023).

    CAS 
    PubMed 

    Google Scholar
     

  • De Nisco, N. J. et al. Direct detection of tissue-resident bacteria and chronic inflammation in the bladder wall of postmenopausal women with recurrent urinary tract infection. J. Mol. Biol. 431, 4368–4379 (2019).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Behzadi, E. & Behzadi, P. The role of toll-like receptors (TLRs) in urinary tract infections (UTIs). Cent. European J. Urol. 69, 404–410 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pettenati, C. & Ingersoll, M. A. Mechanisms of BCG immunotherapy and its outlook for bladder cancer. Nat. Rev. Urol. 15, 615–625 (2018).

    CAS 
    PubMed 

    Google Scholar
     

  • Deltourbe, L., Lacerda Mariano, L., Hreha, T. N., Hunstad, D. A. & Ingersoll, M. A. The impact of biological sex on diseases of the urinary tract. Mucosal Immunol. 15, 857–866 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rousseau, M., Lacerda Mariano, L., Canton, T. & Ingersoll, M. A. Tissue-resident memory T cells mediate mucosal immunity to recurrent urinary tract infection. Sci. Immunol. 8, eabn4332 (2023).

    CAS 
    PubMed 

    Google Scholar
     

  • Rousseau, M. et al. Identification of sex differences in tumor-specific T cell infiltration in bladder tumor-bearing mice treated with BCG immunotherapy. Bladder Cancer 6, 507–524 (2020).


    Google Scholar
     

  • Hang, L., Wullt, B., Shen, Z., Karpman, D. & Svanborg, C. Cytokine repertoire of epithelial cells lining the human urinary tract. J. Urol. 159, 2185–2192 (1998).

    CAS 
    PubMed 

    Google Scholar
     

  • Godaly, G., Hang, L., Frendéus, B. & Svanborg, C. Transepithelial neutrophil migration is CXCR1 dependent in vitro and is defective in IL-8 receptor knockout mice. J. Immunol. 165, 5287–5294 (2000).

    CAS 
    PubMed 

    Google Scholar
     

  • Hang, L. et al. Macrophage inflammatory protein-2 is required for neutrophil passage across the epithelial barrier of the infected urinary tract. J. Immunol. 162, 3037–3044 (1999).

    CAS 
    PubMed 

    Google Scholar
     

  • Lewis, D. A. et al. The human urinary microbiome; bacterial DNA in voided urine of asymptomatic adults. Front. Cell Infect. Microbiol. 3, 41 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gottschick, C. et al. The urinary microbiota of men and women and its changes in women during bacterial vaginosis and antibiotic treatment. Microbiome 5, 99 (2017).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Saenz, C. N., Neugent, M. L. & De Nisco, N. J. The human urinary microbiome and its potential role in urinary tract infections. Eur. Urol. Focus 10, 889–892 (2025).


    Google Scholar
     

  • Roje, B. et al. Microbiota alters urinary bladder weight and gene expression. Microorganisms 8, 421 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Whiteside, S. A., Razvi, H., Dave, S., Reid, G. & Burton, J. P. The microbiome of the urinary tract — a role beyond infection. Nat. Rev. Urol. 12, 81–90 (2015).

    PubMed 

    Google Scholar
     

  • Jahromi, M. S., Mure, A. & Gomez, C. S. UTIs in patients with neurogenic bladder. Curr. Urol. Rep. 15, 433 (2014).

    PubMed 

    Google Scholar
     

  • de Medeiros Junior, W. L. G. et al. Urinary tract infection in patients with multiple sclerosis: an overview. Mult. Scler. Relat. Disord. 46, 102462 (2020).

    PubMed 

    Google Scholar
     

  • Chaudhry, R. et al. Risk factors associated with recurrent urinary tract infection in neurogenic bladders managed by clean intermittent catheterization. Urology 102, 213–218 (2017).

    PubMed 

    Google Scholar
     

  • Balsara, Z. R. et al. Enhanced susceptibility to urinary tract infection in the spinal cord-injured host with neurogenic bladder. Infect. Immun. 81, 3018–3026 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jones-Freeman, B. et al. The microbiome and host mucosal interactions in urinary tract diseases. Mucosal Immunol. 14, 779–792 (2021).

    CAS 
    PubMed 

    Google Scholar
     

  • Komesu, Y. M. et al. Defining the relationship between vaginal and urinary microbiomes. Am. J. Obstet. Gynecol. 222, 154.e1–154.e10 (2020).

    CAS 
    PubMed 

    Google Scholar
     

  • Gilbert, N. M., O’Brien, V. P. & Lewis, A. L. Transient microbiota exposures activate dormant Escherichia coli infection in the bladder and drive severe outcomes of recurrent disease. PLoS Pathog. 13, e1006238 (2017).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dalghi, M. G., Montalbetti, N., Carattino, M. D. & Apodaca, G. The urothelium: life in a liquid environment. Physiol. Rev. 100, 1621–1705 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Aitekenov, S., Gaipov, A. & Bukasov, R. Review: detection and quantification of proteins in human urine. Talanta 223, 121718 (2021).

    CAS 
    PubMed 

    Google Scholar
     

  • Sahu, S., John, J. & Augusty, A. Estimation of 24 h urine protein versus spot urine protein creatinine ratio in patients with kidney disease. Indian. J. Clin. Biochem. 37, 361–364 (2022).

    CAS 
    PubMed 

    Google Scholar
     

  • Decramer, S. et al. Urine in clinical proteomics. Mol. Cell Proteom. 7, 1850–1862 (2008).

    CAS 

    Google Scholar
     

  • Nolen, B. M. et al. An extensive targeted proteomic analysis of disease-related protein biomarkers in urine from healthy donors. PLoS ONE 8, e63368 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhao, M. et al. A comprehensive analysis and annotation of human normal urinary proteome. Sci. Rep. 7, 3024 (2017).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Suzuki, O., Koura, M., Uchio-Yamada, K. & Sasaki, M. Urinary protein analysis in mice lacking major urinary proteins. Exp. Anim. 70, 406–411 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wu, J. & Gao, Y. Physiological conditions can be reflected in human urine proteome and metabolome. Expert. Rev. Proteom. 12, 623–636 (2015).

    CAS 

    Google Scholar
     

  • Fan, S. et al. Sex-associated differences in baseline urinary metabolites of healthy adults. Sci. Rep. 8, 11883 (2018).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bechtold, W. E., Strunk, M. R., Chang, I. Y., Ward, J. B. & Henderson, R. F. Species differences in urinary butadiene metabolites: comparisons of metabolite ratios between mice, rats, and humans. Toxicol. Appl. Pharmacol. 127, 44–49 (1994).

    CAS 
    PubMed 

    Google Scholar
     

  • Abelson, B. et al. Sex differences in lower urinary tract biology and physiology. Biol. Sex. Differ. 9, 45 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Siroky, M. B. The aging bladder. Rev. Urol. 6, S3 (2004).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Khandelwal, P., Abraham, S. N. & Apodaca, G. Cell biology and physiology of the uroepithelium. Am. J. Physiol. Renal Physiol. 297, F1477 (2009).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rosen, D. A., Hooton, T. M., Stamm, W. E., Humphrey, P. A. & Hultgren, S. J. Detection of intracellular bacterial communities in human urinary tract infection. PLoS Med. 4, e329 (2007).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bowyer, G. S., Loudon, K. W., Suchanek, O. & Clatworthy, M. R. Tissue immunity in the bladder. Annu. Rev. Immunol. 40, 499–523 (2022).

    CAS 
    PubMed 

    Google Scholar
     

  • Hopkins, W. J., Gendron-Fitzpatrick, A., Balish, E. & Uehling, D. T. Time course and host responses to Escherichia coli urinary tract infection in genetically distinct mouse strains. Infect. Immun. 66, 2798–2802 (1998).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Svanborg Edén, C., Briles, D., Hagberg, L., McGhee, J. & Michalec, S. Genetic factors in host resistance to urinary tract infection. Infection 12, 118–123 (1984).

    PubMed 

    Google Scholar
     

  • Murawski, I. J. et al. The C3H/HeJ inbred mouse is a model of vesico-ureteric reflux with a susceptibility locus on chromosome 12. Kidney Int. 78, 269–278 (2010).

    CAS 
    PubMed 

    Google Scholar
     

  • Hagberg, L. et al. Difference in susceptibility to Gram-negative urinary tract infection between C3H/HeJ and C3H/HeN mice. Infect. Immun. 46, 839–844 (1984).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Song, J., Bishop, B. L., Li, G., Duncan, M. J. & Abraham, S. N. TLR4 initiated and cAMP mediated abrogation of bacterial invasion of the bladder. Cell Host Microbe 1, 287–298 (2007).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shahin, R. D., Engberg, I., Hagberg, L. & Svanborg Edén, C. Neutrophil recruitment and bacterial clearance correlated with LPS responsiveness in local Gram-negative infection. J. Immunol. 138, 3475–3480 (1987).

    CAS 
    PubMed 

    Google Scholar
     

  • Logan, D. W., Marton, T. F. & Stowers, L. Species specificity in major urinary proteins by parallel evolution. PLoS ONE 3, e3280 (2008).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Aizawa, N., Homma, Y. & Igawa, Y. Influence of high fat diet feeding for 20 weeks on lower urinary tract function in mice. Low. Urin. Tract. Symptoms 5, 101–108 (2013).

    CAS 
    PubMed 

    Google Scholar
     

  • Huang Foen Chung, J. W. N. C. & van Mastrigt, R. Age and volume dependent normal frequency volume charts for healthy males. J. Urol. 182, 210–214 (2009).

    PubMed 

    Google Scholar
     

  • Yang, P. J., Pham, J., Choo, J. & Hu, D. L. Duration of urination does not change with body size. Proc. Natl Acad. Sci. 111, 11932–11937 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Barber, A. E., Norton, J. P., Wiles, T. J. & Mulvey, M. A. Strengths and limitations of model systems for the study of urinary tract infections and related pathologies. Microbiol. Mol. Biol. Rev. 80, 351–367 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Brodin, P. & Davis, M. M. Human immune system variation. Nat. Rev. Immunol. 17, 21–29 (2017).

    CAS 
    PubMed 

    Google Scholar
     

  • Eto, D. S., Sundsbak, J. L. & Mulvey, M. A. Actin-gated intracellular growth and resurgence of uropathogenic Escherichia coli. Cell. Microbiol. 8, 704–717 (2006).

    CAS 
    PubMed 

    Google Scholar
     

  • Lüthje, P. et al. Estrogen supports urothelial defense mechanisms. Sci. Transl. Med. 5, 190ra80–190ra80 (2013).

    PubMed 

    Google Scholar
     

  • Klumpp, D. J. et al. Uropathogenic Escherichia coli induces extrinsic and intrinsic cascades to initiate urothelial apoptosis. Infect. Immun. 74, 5106–5113 (2006).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Berry, R. E., Klumpp, D. J. & Schaeffer, A. J. Urothelial cultures support intracellular bacterial community formation by uropathogenic Escherichia coli. Infect. Immun. 77, 2762–2772 (2009).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Thumbikat, P. et al. Bacteria-induced uroplakin signaling mediates bladder response to infection. PLoS Pathog. 5, e1000415 (2009).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Iosifidis, G. & Duggin, I. G. Distinct morphological fates of uropathogenic Escherichia coli intracellular bacterial communities: dependency on urine composition and pH. Infect. Immun. 88, e00884–19 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Söderström, B., Pittorino, M. J., Daley, D. O. & Duggin, I. G. Assembly dynamics of FtsZ and DamX during infection-related filamentation and division in uropathogenic E. coli. Nat. Commun. 13, 3648 (2022).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pokhrel, A., Costas, A., Pittorino, M., Duggin, I. & Söderström, B. E. coli division machinery drives cocci development inside host cells. Preprint at bioRxiv https://doi.org/10.1101/2024.04.08.588611 (2024).

  • Andersen, T. E. et al. Escherichia coli uropathogenesis in vitro: invasion, cellular escape, and secondary infection analyzed in a human bladder cell infection model. Infect. Immun. 80, 1858–1867 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Klumpp, D. J. et al. Uropathogenic Escherichia coli potentiates type 1 pilus-induced apoptosis by suppressing NF-κB. Infect. Immun. 69, 6689–6695 (2001).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Georgopoulos, N. T. et al. Immortalisation of normal human urothelial cells compromises differentiation capacity. Eur. Urol. 60, 141–149 (2011).

    CAS 
    PubMed 

    Google Scholar
     

  • Belik, R. et al. Improvements in culturing exfoliated urothelial cells in vitro from human urine. J. Toxicol. Env. Health A 71, 923–929 (2008).

    CAS 

    Google Scholar
     

  • Zalewska-Piątek, B. et al. A shear stress micromodel of urinary tract infection by the Escherichia coli producing Dr adhesin. PLoS Pathog. 16, e1008247 (2020).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wieser, A., Guggenberger, C., Pritsch, M., Heesemann, J. & Schubert, S. A novel ex vivo set-up for dynamic long-term characterization of processes on mucosal interfaces by confocal imaging and simultaneous cytokine measurements. Cell. Microbiol. 13, 742–751 (2011).

    CAS 
    PubMed 

    Google Scholar
     

  • Klein, K., Palarasah, Y., Kolmos, H. J., Møller-Jensen, J. & Andersen, T. E. Quantification of filamentation by uropathogenic Escherichia coli during experimental bladder cell infection by using semi-automated image analysis. J. Microbiol. Methods 109, 110–116 (2015).

    CAS 
    PubMed 

    Google Scholar
     

  • Kim, E. et al. Creation of bladder assembloids mimicking tissue regeneration and cancer. Nature 588, 664–669 (2020).

    CAS 
    PubMed 

    Google Scholar
     

  • Strandgaard, T. et al. Mutational analysis of field cancerization in bladder cancer. Bladder Cancer 6, 253–264 (2020).


    Google Scholar
     

  • Feenstra, T. et al. Adhesion of Escherichia coli under flow conditions reveals potential novel effects of FimH mutations. Eur. J. Clin. Microbiol. Infect. Dis. 36, 467–478 (2017).

    CAS 
    PubMed 

    Google Scholar
     

  • Gadhvi, J. G. et al. Bladder-resident bacteria associated with increased risk of recurrence after electrofulguration in women with antibiotic-recalcitrant urinary tract infection. Preprint at medRxiv https://doi.org/10.1101/2024.07.03.24309902 (2024).

  • Kuprasertkul, A. et al. Reduced urothelial expression of uroplakin-IIIa in cystitis areas in bladders of postmenopausal women with recurrent urinary tract infections: pilot study. World J. Urol. 40, 1723–1730 (2022).

    CAS 
    PubMed 

    Google Scholar
     

  • Zhao, Z. Organoids. Nat. Rev. Methods Primer 2, 1–21 (2022).


    Google Scholar
     

  • Bar-Ephraim, Y. E., Kretzschmar, K. & Clevers, H. Organoids in immunological research. Nat. Rev. Immunol. 20, 279–293 (2020).

    CAS 
    PubMed 

    Google Scholar
     

  • Yui, S. Functional engraftment of colon epithelium expanded in vitro from a single adult Lgr5+ stem cell. Nat. Med. 18, 618–623 (2012).

    CAS 
    PubMed 

    Google Scholar
     

  • Leung, C. M. A guide to the organ-on-a-chip. Nat. Rev. Methods Primer 2, 1–29 (2022).


    Google Scholar
     

  • Huh, D. et al. Reconstituting organ-level lung functions on a chip. Science 328, 1662–1668 (2010).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Huh, D. D. A human breathing lung-on-a-chip. Ann. Am. Thorac. Soc. 12, S42–S44 (2015).

    PubMed 

    Google Scholar
     

  • Picollet-D’hahan, N., Zuchowska, A., Lemeunier, I. & Le Gac, S. Multiorgan-on-a-chip: a systemic approach to model and decipher inter-organ communication. Trends Biotechnol. 39, 788–810 (2021).

    PubMed 

    Google Scholar
     

  • Novak, R. et al. Robotic fluidic coupling and interrogation of multiple vascularized organ chips. Nat. Biomed. Eng. 4, 407–420 (2020).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tsamandouras, N. et al. Integrated gut and liver microphysiological systems for quantitative in vitro pharmacokinetic studies. AAPS J. 19, 1499–1512 (2017).

    CAS 
    PubMed 

    Google Scholar
     

  • Wagner, I. et al. A dynamic multi-organ-chip for long-term cultivation and substance testing proven by 3D human liver and skin tissue co-culture. Lab Chip 13, 3538–3547 (2013).

    CAS 
    PubMed 

    Google Scholar
     

  • Source link

    Get RawNews Daily

    Stay informed with our RawNews daily newsletter email

    A bladder blueprint to build better models for understanding homeostasis and disease

    Cora: Devers Will Be Red Sox’ Primary Designated Hitter

    Houston Rockets are labeled ‘top contenders’ in recent power rankings

    Two Men Caught on Video Delivering ‘RIP Drake’ Coffin to DJ Khaled’s Home