Stock Ticker

Single-cell transcriptional responses of T cells during microsporidia infection

  • Han, B. & Weiss, L. M. Microsporidia: obligate intracellular pathogens within the fungal kingdom. Microbiol. Spectr. 5, https://doi.org/10.1128/microbiolspec.funk-0018-2016 (2017).

  • Han, B. et al. The role of microsporidian polar tube protein 4 (PTP4) in host cell infection. PLoS Pathog. 13, e1006341 (2017).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Stentiford, G. D. et al. Microsporidia – emergent pathogens in the global food chain. Trends Parasitol. 32, 336–348 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dunn, A. M., Terry, R. S. & Smith, J. E. Transovarial transmission in the microsporidia. Adv. Parasitol. 48, 57–100 (2001).

    CAS 
    PubMed 

    Google Scholar
     

  • Terry, R. S. et al. Widespread vertical transmission and associated host sex-ratio distortion within the eukaryotic phylum Microspora. Proc. Biol. Sci. 271, 1783–1789 (2004).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sak, B., Kváč, M., Kučerová, Z., Květoňová, D. & Saková, K. Latent microsporidial infection in immunocompetent individuals – a longitudinal study. PLoS Negl. Trop. Dis. 5, e1162 (2011).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Han, B., Pan, G. & Weiss, L. M. Microsporidiosis in humans. Clin. Microbiol. Rev. 34, (2021). e0001020.

    PubMed 

    Google Scholar
     

  • Wang, Z. D. et al. Prevalence of Cryptosporidium, microsporidia and Isospora infection in HIV-infected people: a global systematic review and meta-analysis. Parasit. Vectors 11, 28 (2018).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nagpal, A. et al. Disseminated microsporidiosis in a renal transplant recipient: case report and review of the literature. Transpl. Infect. Dis. 15, 526–532 (2013).

    CAS 
    PubMed 

    Google Scholar
     

  • Lores, B. et al. Intestinal microsporidiosis due to Enterocytozoon bieneusi in elderly human immunodeficiency virus-negative patients from Vigo, Spain. Clin. Infect. Dis. 34, 918–921 (2002).

  • Moretto, M. M. & Khan, I. A. Immune response to microsporidia. Exp. Suppl. 114, 373–388 (2022).

    CAS 
    PubMed 

    Google Scholar
     

  • Fischer, J., Suire, C. & Hale-Donze, H. Toll-like receptor 2 recognition of the microsporidia Encephalitozoon spp. induces nuclear translocation of NF-kappaB and subsequent inflammatory responses. Infect. Immun. 76, 4737–4744 (2008).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lawlor, E. M., Moretto, M. M. & Khan, I. A. Optimal CD8 T-cell response against Encephalitozoon cuniculi is mediated by Toll-like receptor 4 upregulation by dendritic cells. Infect. Immun. 78, 3097–3102 (2010).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Moretto, M. M., Harrow, D. I., Hawley, T. S. & Khan, I. A. Interleukin-12-producing CD103+ CD11b- CD8+ dendritic cells are responsible for eliciting gut intraepithelial lymphocyte response against Encephalitozoon cuniculi. Infect. Immun. 83, 4719–4730 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Moretto, M. M., Weiss, L. M., Combe, C. L. & Khan, I. A. IFN-γ-producing dendritic cells are important for priming of gut intraepithelial lymphocyte response against intracellular parasitic infection. J. Immunol. 179, 2485–2492 (2007).

    CAS 
    PubMed 

    Google Scholar
     

  • Khan, I. A., Schwartzman, J. D., Kasper, L. H. & Moretto, M. CD8+ CTLs are essential for protective immunity against Encephalitozoon cuniculi infection. J. Immunol. 162, 6086–6091 (1999).

    CAS 
    PubMed 

    Google Scholar
     

  • Moretto, M. M., Harrow, D. I. & Khan, I. A. Effector CD8 T cell immunity in microsporidial infection: a lone defense mechanism. Semin. Immunopathol. 37, 281–287 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Braunfuchsová, P., Salát, J. & Kopecký, J. CD8+ T lymphocytes protect SCID mice against Encephalitozoon cuniculi infection. Int. J. Parasitol. 31, 681–686 (2001).

    PubMed 

    Google Scholar
     

  • Bhadra, R. et al. Intrinsic TGF-β signaling promotes age-dependent CD8+ T cell polyfunctionality attrition. J. Clin. Invest. 124, 2441–2455 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Moretto, M. M. & Khan, I. A. IL-21 is important for induction of KLRG1+ effector CD8 T cells during acute intracellular infection. J. Immunol. 196, 375–384 (2016).

    CAS 
    PubMed 

    Google Scholar
     

  • Moretto, M., Casciotti, L., Durell, B. & Khan, I. A. Lack of CD4+ T cells does not affect induction of CD8+ T-cell immunity against Encephalitozoon cuniculi infection. Infect. Immun. 68, 6223–6232 (2000).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Luo, G., Gao, Q., Zhang, S. & Yan, B. Probing infectious disease by single-cell RNA sequencing: progresses and perspectives. Comput. Struct. Biotechnol. J. 18, 2962–2971 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dooley, N. L., et al. Single cell transcriptomics shows that malaria promotes unique regulatory responses across multiple immune cell subsets. Nat. Commun. 14, 7387 (2023).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wilk, A. J. et al. A single-cell atlas of the peripheral immune response in patients with severe COVID-19. Nat. Med. 26, 1070–1076 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yang, X., et al. Single-cell profiling reveals distinct immune response landscapes in tuberculous pleural effusion and non-TPE. Front. Immunol. 14, 1191357 (2023).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Scholzen, T. & Gerdes, J. The Ki-67 protein: from the known and the unknown. J. Cell Physiol. 182, 311–322 (2000).

    CAS 
    PubMed 

    Google Scholar
     

  • Rubin, C. I. & Atweh, G. F. The role of stathmin in the regulation of the cell cycle. J. Cell Biochem. 93, 242–250 (2004).

    CAS 
    PubMed 

    Google Scholar
     

  • Iyer, S. S. et al. Identification of novel markers for mouse CD4+ T follicular helper cells. Eur. J. Immunol. 43, 3219–3232 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Meckiff, B. J. et al. Imbalance of regulatory and cytotoxic SARS-CoV-2-reactive CD4(+) T cells in COVID-19. Cell.183, 1340-1353.e16 (2020).

  • Kumar, S. et al. Specialized Tfh cell subsets driving type-1 and type-2 humoral responses in lymphoid tissue. Cell Discov. 10, 64 (2024).

  • Gounari, F. & Khazaie, K. TCF-1: a maverick in T cell development and function. Nat. Immunol. 23, 671–678 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Escobar, G., Mangani, D. & Anderson, A. C. T cell factor 1: a master regulator of the T cell response in disease. Sci. Immunol. 5, (2020). eabb9726.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen, Z. et al. TCF-1-centered transcriptional network drives an effector versus exhausted CD8 T cell-fate decision. Immunity.51, 840–855.e5 (2019).

  • Hou, J. et al. ZC3H15 promotes gastric cancer progression by targeting the FBXW7/c-Myc pathway. Cell Death Discov. 8, 32 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cibrián, D. & Sánchez-Madrid, F. CD69: from activation marker to metabolic gatekeeper. Eur. J. Immunol. 47, 946–953 (2017).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xu, W. et al. The transcription factor Tox2 drives T follicular helper cell development via regulating chromatin accessibility. Immunity 51, 826–839.e825 (2019).

    CAS 
    PubMed 

    Google Scholar
     

  • Moretto, M., Durell, B., Schwartzman, J. D. & Khan, I. A. γδ T cell-deficient mice have a down-regulated CD8+ T cell immune response against Encephalitozoon cuniculi infection. J. Immunol. 166, 7389–7397 (2001).

    CAS 
    PubMed 

    Google Scholar
     

  • Saravia, J., Chapman, N. M. & Chi, H. Helper T cell differentiation. Cell Mol. Immunol. 16, 634–643 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sun, L., Su, Y., Jiao, A., Wang, X. & Zhang, B. T cells in health and disease. Signal Transduct. Target Ther. 8, 235 (2023).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chitu, V. & Stanley, E. R. Colony-stimulating factor-1 in immunity and inflammation. Curr. Opin. Immunol. 18, 39–48 (2006).

    CAS 
    PubMed 

    Google Scholar
     

  • Becher, B., Tugues, S. & Greter, M. GM-CSF: from growth factor to central mediator of tissue inflammation. Immunity 45, 963–973 (2016).

    CAS 
    PubMed 

    Google Scholar
     

  • Fontana, M. F. et al. Macrophage colony stimulating fctor derived from CD4+ T cells contributes to control of a blood-borne infection. PLoS Pathog. 12, e1006046 (2016).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mamedov, M. R. et al. A macrophage colony-stimulating-factor-producing γδ T cell subset prevents malarial parasitemic recurrence. Immunity 48, 350–363.e357 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Didier, E. S. et al. Reactive nitrogen and oxygen species, and iron sequestration contribute to macrophage-mediated control of Encephalitozoon cuniculi (Phylum Microsporidia) infection in vitro and in vivo. Microbes Infect. 12, 1244–1251 (2010).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lu, Y. et al. Encephalitozoon hellem infection promotes monocytes extravasation. Pathogens 11, 914 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Salát, J., Sak, B., Le, T. & Kopecký, J. Susceptibility of IFN-γor IL-12 knock-out and SCID mice to infection with two microsporidian species, Encephalitozoon cuniculi and E. intestinalis. Folia Parasitol. (Praha) 51, 275–282 (2004).

    PubMed 

    Google Scholar
     

  • Belyaev, N. N., Biró, J., Langhorne, J. & Potocnik, A. J. Extramedullary myelopoiesis in malaria depends on mobilization of myeloid-restricted progenitors by IFN-γ induced chemokines. PLoS Pathog. 9, e1003406 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Belyaev, N. N. et al. Induction of an IL7-R+c-Kithi myelolymphoid progenitor critically dependent on IFN-γ signaling during acute malaria. Nat. Immunol. 11, 477–485 (2010).

    CAS 
    PubMed 

    Google Scholar
     

  • Omilusik, K. D. et al. Transcriptional repressor ZEB2 promotes terminal differentiation of CD8+ effector and memory T cell populations during infection. J. Exp. Med. 212, 2027–2039 (2015).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chowdhury, D. & Lieberman, J. Death by a thousand cuts: granzyme pathways of programmed cell death. Annu. Rev. Immunol. 26, 389–420 (2008).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kelso, A. et al. The genes for perforin, granzymes A-C and IFN-γ are differentially expressed in single CD8+ T cells during primary activation. Int. Immunol. 14, 605–613 (2002).

    CAS 
    PubMed 

    Google Scholar
     

  • Zhou, Z. et al. Granzyme A from cytotoxic lymphocytes cleaves GSDMB to trigger pyroptosis in target cells. Science 368, eaaz7548 (2020).

    CAS 
    PubMed 

    Google Scholar
     

  • Susanto, O. et al. Mouse granzyme A induces a novel death with writhing morphology that is mechanistically distinct from granzyme B-induced apoptosis. Cell Death Differ. 20, 1183–1193 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ewen, C. L., Kane, K. P. & Bleackley, R. C. A quarter century of granzymes. Cell Death Differ. 19, 28–35 (2012).

    CAS 
    PubMed 

    Google Scholar
     

  • Chora, Â, et al. Interplay between liver and blood stages of Plasmodium infection dictates malaria severity via γδ T cells and IL-17-promoted stress erythropoiesis. Immunity 56, 592–605.e598 (2023).

    CAS 
    PubMed 

    Google Scholar
     

  • Wang, T. et al. γδ T cells facilitate adaptive immunity against West Nile virus infection in mice. J. Immunol. 177, 1825–1832 (2006).

    CAS 
    PubMed 

    Google Scholar
     

  • Lees, R. K., Ferrero, I., Fau, -, MacDonald, H. R. & MacDonald, H. R. Tissue-specific segregation of TCRgamma delta+ NKT cells according to phenotype TCR repertoire and activation status: parallels with TCR alphabeta+NKT cells. Eur. J. Immunol. 31, 2901–2909 (2001).

    CAS 
    PubMed 

    Google Scholar
     

  • Pavie, J. et al. Prevalence of opportunistic intestinal parasitic infections among HIV-infected patients with low CD4 cells counts in France in the combination antiretroviral therapy era. Int. J. Infect. Dis. 16, e677–e679 (2012).

    PubMed 

    Google Scholar
     

  • Moretto, M., Weiss, L. M. & Khan, I. A. Induction of a rapid and strong antigen-specific intraepithelial lymphocyte response during oral Encephalitozoon cuniculi infection. J. Immunol. 172, 4402–4409 (2004).

    CAS 
    PubMed 

    Google Scholar
     

  • Salat, J., Braunfuchsová, P., Kopecký, J. & Ditrich, O. Role of CD4+ and CD8+ T lymphocytes in the protection of mice against Encephalitozoon intestinalis infection. Parasitol. Res. 88, 603–608 (2002).

    PubMed 

    Google Scholar
     

  • Quan, Y. Z. et al. Reprogramming by drug-like molecules leads to regeneration of cochlear hair cell-like cells in adult mice. Proc. Natl. Acad. Sci. USA 120, (2023). e2215253120.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tsuchiya, Y., et al. Fibroblast growth factor 18 stimulates the proliferation of hepatic stellate cells, thereby inducing liver fibrosis. Nat. Commun. 14, 6304 (2023).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Godoy, R. S. et al. Single-cell transcriptomic atlas of lung microvascular regeneration after targeted endothelial cell ablation. Elife 12, e80900 (2023).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Butler, A., Hoffman, P., Smibert, P., Papalexi, E. & Satija, R. Integrating single-cell transcriptomic data across different conditions, technologies, and species. Nat. Biotechnol. 36, 411–420 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Stuart, T. et al. Comprehensive integration of single-cell data. Cell 177, 1888–1902.e1821 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • McGinnis, C. S., Murrow, L. M. & Gartner, Z. J. DoubletFinder: doublet detection in single-cell RNA sequencing data using artificial nearest neighbors. Cell Syst. 8, 329–337.e324 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang, X. et al. CellMarker: a manually curated resource of cell markers in human and mouse. Nucleic Acids Res. 47, D721–D728 (2019).

  • Camp, J. G. et al. Multilineage communication regulates human liver bud development from pluripotency. Nature 546, 533–538 (2017).

    CAS 
    PubMed 

    Google Scholar
     

  • Source link

    Get RawNews Daily

    Stay informed with our RawNews daily newsletter email

    Single-cell transcriptional responses of T cells during microsporidia infection

    Trump White House touts first quarter jobs record: JOBS, JOBS, JOBS

    Tori Spelling Wishes Sex Tape With Ex Husband Dean McDermott Leaked

    Adani Invitational Golf: Saptak Talwar Bags Maiden Title With Thrilling Win On Home Turf