Stock Ticker

Ecology, global diversity and evolutionary mechanisms in the Mycobacterium tuberculosis complex

  • World Health Organization. Global tuberculosis report 2024 (WHO, 2024).

  • Antimicrobial Resistance Collaborators. Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis. Lancet 399, 629–655 (2022).


    Google Scholar
     

  • Farhat, M. et al. Drug-resistant tuberculosis: a persistent global health concern. Nat. Rev. Microbiol. 22, 617–635 (2024).

    CAS 
    PubMed 

    Google Scholar
     

  • Gagneux, S. Ecology and evolution of Mycobacterium tuberculosis. Nat. Rev. Microbiol. 16, 202–213 (2018).

    CAS 
    PubMed 

    Google Scholar
     

  • World Health Organization. Roadmap for zoonotic tuberculosis (WHO, 2017).

  • Orgeur, M., Sous, C., Madacki, J. & Brosch, R. Evolution and emergence of Mycobacterium tuberculosis. FEMS Microbiol. Rev. 48, fuae006 (2024).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pepperell, C. S. Evolution of tuberculosis pathogenesis. Annu. Rev. Microbiol. 76, 661–680 (2022).

    CAS 
    PubMed 

    Google Scholar
     

  • Chiner-Oms, Á. et al. Genomic determinants of speciation and spread of the Mycobacterium tuberculosis complex. Sci. Adv. 5, eaaw3307 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ceres, K. M., Stanhope, M. J. & Gröhn, Y. T. A critical evaluation of pangenomics, with reference to its utility in outbreak investigation. Microb. Genom. 8, mgen000839 (2022).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Stritt, C. & Gagneux, S. How do monomorphic bacteria evolve? The Mycobacterium tuberculosis complex and the awkward population genetics of extreme clonality. Peer Community J. 3, e92 (2023).


    Google Scholar
     

  • Meehan, C. J. et al. Whole genome sequencing of Mycobacterium tuberculosis: current standards and open issues. Nat. Rev. Microbiol. 17, 533–545 (2019).

    CAS 

    Google Scholar
     

  • Brites, D. et al. A new phylogenetic framework for the animal-adapted Mycobacterium tuberculosis complex. Front. Microbiol. 9, 2820 (2018).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Malone, K. M. & Gordon, S. V. Mycobacterium tuberculosis complex members adapted to wild and domestic animals. Adv. Exp. Med. Biol. 1019, 135–154 (2017).

    CAS 
    PubMed 

    Google Scholar
     

  • Coscolla, M. et al. Novel Mycobacterium tuberculosis complex isolate from a wild chimpanzee. Emerg. Infect. Dis. 19, 969–976 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Coscolla, M. et al. Phylogenomics of Mycobacterium africanum reveals a new lineage and a complex evolutionary history. Microb. Genom. 7, 000477 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Guyeux, C. et al. Newly identified Mycobacterium africanum lineage 10, central Africa. Emerg. Infect. Dis. 30, 560–563 (2024).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bos, K. I. et al. Pre-Columbian mycobacterial genomes reveal seals as a source of New World human tuberculosis. Nature 514, 494–497 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Vågene, Å. J. et al. Geographically dispersed zoonotic tuberculosis in pre-contact South American human populations. Nat. Commun. 13, 1195 (2022).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Orgeur, M. et al. Pathogenomic analyses of Mycobacterium microti, an ESX-1-deleted member of the Mycobacterium tuberculosis complex causing disease in various hosts. Microb. Genom. 7, 000505 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wells, A. Q. Tuberculosis in wild voles. Lancet 229, 1221 (1937).


    Google Scholar
     

  • Ghielmetti, G. et al. Mycobacterium microti infections in free-ranging red deer (Cervus elaphus). Emerg. Infect. Dis. 27, 2025–2032 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Brynildsrud, O. B. et al. Global expansion of Mycobacterium tuberculosis lineage 4 shaped by colonial migration and local adaptation. Sci. Adv. 4, eaat5869 (2018).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zwyer, M. et al. A new nomenclature for the livestock-associated Mycobacterium tuberculosis complex based on phylogenomics. Open Res. Eur. 1, 100 (2021).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Loiseau, C. et al. An African origin for Mycobacterium bovis. Evol. Med. Public Health 2020, 49–59 (2020).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pereira, A. C., Pinto, D. & Cunha, M. V. First time whole genome sequencing of Mycobacterium bovis from the environment supports transmission at the animal–environment interface. J. Hazard. Mater. 472, 134473 (2024).

    CAS 
    PubMed 

    Google Scholar
     

  • Allen, A. R., Ford, T. & Skuce, R. A. Does Mycobacterium tuberculosis var. bovis survival in the environment confound bovine tuberculosis control and eradication? A literature review. Vet. Med. Int. 2021, 8812898 (2021).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Duffy, S. C., Marais, B., Kapur, V. & Behr, M. A. Zoonotic tuberculosis in the 21st century. Lancet Infect. Dis. 24, 339–341 (2024).

    PubMed 

    Google Scholar
     

  • Refaya, A. K. et al. Whole-genome sequencing of a Mycobacterium orygis strain isolated from cattle in Chennai, India. Microbiol. Resour. Announc. 8, e01080–e0119 (2019).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jawahar, A., Dhinakar Raj, G., Pazhanivel, N. & Karthik, K. Gross and histopathological features of tuberculosis in cattle, buffalo and spotted deer (Axis axis) caused by Mycobacterium orygis. J. Comp. Pathol. 208, 15–19 (2024).

    PubMed 

    Google Scholar
     

  • Loiseau, C. et al. The relative transmission fitness of multidrug-resistant Mycobacterium tuberculosis in a drug resistance hotspot. Nat. Commun. 14, 1988 (2023).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chitwood, M. H. et al. The recent rapid expansion of multidrug resistant Ural lineage Mycobacterium tuberculosis in Moldova. Nat. Commun. 15, 2962 (2024).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Goig, G. A. et al. Effect of compensatory evolution in the emergence and transmission of rifampicin-resistant Mycobacterium tuberculosis in Cape Town, South Africa: a genomic epidemiology study. Lancet Microbe 4, e506–e515 (2023).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Brown, T. S. et al. Pre-detection history of extensively drug-resistant tuberculosis in KwaZulu-Natal, South Africa. Proc. Natl Acad. Sci. USA 116, 23284–23291 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • de Jong, B. C., Antonio, M. & Gagneux, S. Mycobacterium africanum — review of an important cause of human tuberculosis in West Africa. PLoS Negl. Trop. Dis. 4, e744 (2010).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Firdessa, R. et al. Mycobacterial lineages causing pulmonary and extrapulmonary tuberculosis, Ethiopia. Emerg. Infect. Dis. 19, 460–463 (2013).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ngabonziza, J. C. S. et al. A sister lineage of the Mycobacterium tuberculosis complex discovered in the African Great Lakes region. Nat. Commun. 11, 2917 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Comas, I. et al. Population genomics of Mycobacterium tuberculosis in Ethiopia contradicts the virgin soil hypothesis for human tuberculosis in sub-Saharan Africa. Curr. Biol. 25, 3260–3266 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Supply, P. et al. Genomic analysis of smooth tubercle bacilli provides insights into ancestry and pathoadaptation of Mycobacterium tuberculosis. Nat. Genet. 45, 172–179 (2013).

    CAS 
    PubMed 

    Google Scholar
     

  • Yenew, B. et al. A smooth tubercle bacillus from Ethiopia phylogenetically close to the Mycobacterium tuberculosis complex. Nat. Commun. 14, 7519 (2023).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • O’Neill, M. B. et al. Lineage specific histories of Mycobacterium tuberculosis dispersal in Africa and Eurasia. Mol. Ecol. 28, 3241–3256 (2019).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rutaihwa, L. K. et al. Multiple introductions of Mycobacterium tuberculosis lineage 2–Beijing into Africa over centuries. Front. Ecol. Evol. 7, 112 (2019).


    Google Scholar
     

  • Menardo, F. et al. Local adaptation in populations of Mycobacterium tuberculosis endemic to the Indian Ocean rim. F1000Res. 10, 60 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shuaib, Y. A. et al. Origin and global expansion of Mycobacterium tuberculosis complex lineage 3. Genes 13, 990 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zwyer, M. et al. Back-to-Africa introductions of Mycobacterium tuberculosis as the main cause of tuberculosis in Dar es Salaam, Tanzania. PLoS Pathog. 19, e1010893 (2023).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • López, M. G. et al. Tuberculosis in Liberia: high multidrug-resistance burden, transmission and diversity modelled by multiple importation events. Microb. Genom. 6, e000325 (2020).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Stucki, D. et al. Mycobacterium tuberculosis lineage 4 comprises globally distributed and geographically restricted sublineages. Nat. Genet. 48, 1535–1543 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hershberg, R. et al. High functional diversity in Mycobacterium tuberculosis driven by genetic drift and human demography. PLoS Biol. 6, e311 (2008).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kay, G. L. et al. Eighteenth-century genomes show that mixed infections were common at time of peak tuberculosis in Europe. Nat. Commun. 6, 6717 (2015).

    PubMed 

    Google Scholar
     

  • Sabin, S. et al. A seventeenth-century Mycobacterium tuberculosis genome supports a Neolithic emergence of the Mycobacterium tuberculosis complex. Genome Biol. 21, 201 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Comas, I. et al. Out-of-Africa migration and Neolithic coexpansion of Mycobacterium tuberculosis with modern humans. Nat. Genet. 45, 1176–1182 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Silcocks, M. & Dunstan, S. J. Parallel signatures of Mycobacterium tuberculosis and human Y-chromosome phylogeography support the Two Layer model of East Asian population history. Commun. Biol 6, 1037 (2023).


    Google Scholar
     

  • Menardo, F., Duchêne, S., Brites, D. & Gagneux, S. The molecular clock of Mycobacterium tuberculosis. PLoS Pathog. 15, e1008067 (2019).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Menardo, F., Gagneux, S. & Freund, F. Multiple merger genealogies in outbreaks of Mycobacterium tuberculosis. Mol. Biol. Evol. 38, 290–306 (2021).

    CAS 
    PubMed 

    Google Scholar
     

  • Duchêne, S. et al. Genome-scale rates of evolutionary change in bacteria. Microb. Genom. 2, e000094 (2016).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wiens, K. E. et al. Global variation in bacterial strains that cause tuberculosis disease: a systematic review and meta-analysis. BMC Med. 16, 196 (2018).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • World Health Organization. Global tuberculosis report 2022 (WHO, 2022).

  • Netikul, T., Palittapongarnpim, P., Thawornwattana, Y. & Plitphonganphim, S. Estimation of the global burden of Mycobacterium tuberculosis lineage 1. Infect. Genet. Evol. 91, 104802 (2021).

    PubMed 

    Google Scholar
     

  • Mitchison, D. A., Selkon, J. B. & Lloyd, J. Virulence in the guinea-pig, susceptibility to hydrogen peroxide, and catalase activity of isoniazid-sensitive tubercle bacilli from south Indian and British patients. J. Pathol. Bacteriol. 86, 377–386 (1963).

    CAS 
    PubMed 

    Google Scholar
     

  • Bottai, D. et al. TbD1 deletion as a driver of the evolutionary success of modern epidemic Mycobacterium tuberculosis lineages. Nat. Commun. 11, 684 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Brosch, R. et al. A new evolutionary scenario for the Mycobacterium tuberculosis complex. Proc. Natl Acad. Sci. USA 99, 3684–3689 (2002).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bateson, A. et al. Ancient and recent differences in the intrinsic susceptibility of Mycobacterium tuberculosis complex to pretomanid. J. Antimicrob. Chemother. 77, 1685–1693 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rupasinghe, P. et al. Refined understanding of the impact of the Mycobacterium tuberculosis complex diversity on the intrinsic susceptibility to pretomanid. Microbiol. Spectr. 12, e0007024 (2024).

    PubMed 

    Google Scholar
     

  • Stanley, S. et al. Identification of bacterial determinants of tuberculosis infection and treatment outcomes: a phenogenomic analysis of clinical strains. Lancet Microbe 5, e570–e580 (2024).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Van Rie, A. et al. Balancing access to BPaLM regimens and risk of resistance. Lancet Infect. Dis. 22, 1411–1412 (2022).

    PubMed 

    Google Scholar
     

  • Borrell, S. et al. Reference set of Mycobacterium tuberculosis clinical strains: a tool for research and product development. PLoS ONE 14, e0214088 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Du, D. H. et al. The effect of M. tuberculosis lineage on clinical phenotype. PLoS Glob. Public Health 3, e0001788 (2023).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • An ancestral mycobacterial effector promotes dissemination of infection. Cell 185, 4507–4525.e18 (2022).

  • Holt, K. E. et al. Frequent transmission of the Mycobacterium tuberculosis Beijing lineage and positive selection for the EsxW Beijing variant in Vietnam. Nat. Genet. 50, 849–856 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Freschi, L. et al. Population structure, biogeography and transmissibility of Mycobacterium tuberculosis. Nat. Commun. 12, 6099 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gröschel, M. I. et al. Differential rates of Mycobacterium tuberculosis transmission associate with host–pathogen sympatry. Nat. Microbiol. 9, 2113–2127 (2024).

    PubMed 

    Google Scholar
     

  • Coussens, A. K. et al. Classification of early tuberculosis states to guide research for improved care and prevention: an international Delphi consensus exercise. Lancet Respir. Med. 12, 484–498 (2024).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Long, R. et al. The association between phylogenetic lineage and the subclinical phenotype of pulmonary tuberculosis: a retrospective 2-cohort study. J. Infect. 88, 123–131 (2024).

    CAS 
    PubMed 

    Google Scholar
     

  • Brites, D. & Gagneux, S. Co-evolution of Mycobacterium tuberculosis and Homo sapiens. Immunol. Rev. 264, 6–24 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hirsh, A. E., Tsolaki, A. G., DeRiemer, K., Feldman, M. W. & Small, P. M. Stable association between strains of Mycobacterium tuberculosis and their human host populations. Proc. Natl Acad. Sci. USA 101, 4871–4876 (2004).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Baker, L., Brown, T., Maiden, M. C. & Drobniewski, F. Silent nucleotide polymorphisms and a phylogeny for Mycobacterium tuberculosis. Emerg. Infect. Dis. 10, 1568–1577 (2004).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gagneux, S. et al. Variable host–pathogen compatibility in Mycobacterium tuberculosis. Proc. Natl Acad. Sci. USA 103, 2869–2873 (2006).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Reed, M. B. et al. Major Mycobacterium tuberculosis lineages associate with patient country of origin. J. Clin. Microbiol. 47, 1119–1128 (2009).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fenner, L. et al. HIV infection disrupts the sympatric host–pathogen relationship in human tuberculosis. PLoS Genet. 9, e1003318 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu, Q. et al. Local adaptation of Mycobacterium tuberculosis on the Tibetan Plateau. Proc. Natl Acad. Sci. USA 118, e2017831118 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Luo, Y. et al. Paired analysis of host and pathogen genomes identifies determinants of human tuberculosis. Nat. Commun. 15, 10393 (2024).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xu, Z. M. et al. Genome-to-genome analysis reveals associations between human and mycobacterial genetic variation in tuberculosis patients from Tanzania. Preprint at medRxiv https://doi.org/10.1101/2023.05.11.23289848 (2023).

  • Comas, I. et al. Human T cell epitopes of Mycobacterium tuberculosis are evolutionarily hyperconserved. Nat. Genet. 42, 498–503 (2010).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Coscolla, M. et al. M. tuberculosis T cell epitope analysis reveals paucity of antigenic variation and identifies rare variable TB antigens. Cell Host Microbe 18, 538–548 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • McHenry, M. L. et al. Interaction between host genes and Mycobacterium tuberculosis lineage can affect tuberculosis severity: evidence for coevolution? PLoS Genet. 16, e1008728 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Woolhouse, M. E. J., Webster, J. P., Domingo, E., Charlesworth, B. & Levin, B. R. Biological and biomedical implications of the co-evolution of pathogens and their hosts. Nat. Genet. 32, 569–577 (2002).

    CAS 
    PubMed 

    Google Scholar
     

  • Osei-Wusu, S. et al. Macrophage susceptibility to infection by Ghanaian Mycobacterium tuberculosis complex lineages 4 and 5 varies with self-reported ethnicity. Front. Cell. Infect. Microbiol. 13, 1163993 (2023).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Asante-Poku, A. et al. Mycobacterium africanum is associated with patient ethnicity in Ghana. PLoS Negl. Trop. Dis. 9, e3370 (2015).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Asante-Poku, A. et al. Molecular epidemiology of Mycobacterium africanum in Ghana. BMC Infect. Dis. 16, 385 (2016).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hiza, H. et al. Bacterial diversity dominates variable macrophage responses of tuberculosis patients in Tanzania. Sci. Rep. 14, 9287 (2024).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Borrell, S. & Gagneux, S. Infectiousness, reproductive fitness and evolution of drug-resistant Mycobacterium tuberculosis. Int. J. Tuberc. Lung Dis. 13, 1456–1466 (2009).

    CAS 
    PubMed 

    Google Scholar
     

  • Torres Ortiz, A. et al. Genomic signatures of pre-resistance in Mycobacterium tuberculosis. Nat. Commun. 12, 7312 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ebrahimi-Rad, M. et al. Mutations in putative mutator genes of Mycobacterium tuberculosis strains of the W-Beijing family. Emerg. Infect. Dis. 9, 838–845 (2003).

    PubMed 

    Google Scholar
     

  • Werngren, J. & Hoffner, S. E. Drug-susceptible Mycobacterium tuberculosis Beijing genotype does not develop mutation-conferred resistance to rifampin at an elevated rate. J. Clin. Microbiol. 41, 1520–1524 (2003).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ford, C. B. et al. Mycobacterium tuberculosis mutation rate estimates from different lineages predict substantial differences in the emergence of drug-resistant tuberculosis. Nat. Genet. 45, 784–790 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Carey, A. F. et al. TnSeq of Mycobacterium tuberculosis clinical isolates reveals strain-specific antibiotic liabilities. PLoS Pathog. 14, e1006939 (2018).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Castro, R. A. D. et al. The genetic background modulates the evolution of fluoroquinolone-resistance in Mycobacterium tuberculosis. Mol. Biol. Evol. 37, 195–207 (2020).

    CAS 
    PubMed 

    Google Scholar
     

  • Gagneux, S. et al. The competitive cost of antibiotic resistance in Mycobacterium tuberculosis. Science 312, 1944–1946 (2006).

    CAS 
    PubMed 

    Google Scholar
     

  • Comas, I. et al. Whole-genome sequencing of rifampicin-resistant Mycobacterium tuberculosis strains identifies compensatory mutations in RNA polymerase genes. Nat. Genet. 44, 106–110 (2011).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Casali, N. et al. Evolution and transmission of drug-resistant tuberculosis in a Russian population. Nat. Genet. 46, 279–286 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Merker, M. et al. Compensatory evolution drives multidrug-resistant tuberculosis in Central Asia. eLife 7, e38200 (2018).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gygli, S. M. et al. Prisons as ecological drivers of fitness-compensated multidrug-resistant Mycobacterium tuberculosis. Nat. Med. 27, 1171–1177 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Merker, M. et al. Transcontinental spread and evolution of Mycobacterium tuberculosis W148 European/Russian clade toward extensively drug resistant tuberculosis. Nat. Commun. 13, 5105 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ngabonziza, J. C. S. et al. Multidrug-resistant tuberculosis control in Rwanda overcomes a successful clone that causes most disease over a quarter century. J. Clin. Tuberc. Other Mycobact. Dis. 27, 100299 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Eldholm, V. et al. Four decades of transmission of a multidrug-resistant Mycobacterium tuberculosis outbreak strain. Nat. Commun. 6, 7119 (2015).

    CAS 
    PubMed 

    Google Scholar
     

  • Dixit, A. et al. Modern lineages of Mycobacterium tuberculosis were recently introduced in western India and demonstrate increased transmissibility. Open Forum Infect. Dis. 8, 783–784 (2021).

    PubMed Central 

    Google Scholar
     

  • Shanmugam, S. K. et al. Mycobacterium tuberculosis lineages associated with mutations and drug resistance in isolates from India. Microbiol. Spectr. 10, e0159421 (2022).

    PubMed 

    Google Scholar
     

  • Dreyer, V. et al. High fluoroquinolone resistance proportions among multidrug-resistant tuberculosis driven by dominant L2 Mycobacterium tuberculosis clones in the Mumbai metropolitan region. Genome Med. 14, 95 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Castro, R. A. D., Borrell, S. & Gagneux, S. The within-host evolution of antimicrobial resistance in Mycobacterium tuberculosis. FEMS Microbiol. Rev. 45, fuaa071 (2021).

    CAS 
    PubMed 

    Google Scholar
     

  • Morales-Arce, A. Y., Sabin, S. J., Stone, A. C. & Jensen, J. D. The population genomics of within-host Mycobacterium tuberculosis. Heredity 126, 1–9 (2021).

    PubMed 

    Google Scholar
     

  • Trauner, A. et al. The within-host population dynamics of Mycobacterium tuberculosis vary with treatment efficacy. Genome Biol. 18, 71 (2017).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nimmo, C. et al. Dynamics of within-host Mycobacterium tuberculosis diversity and heteroresistance during treatment. EBioMedicine 55, 102747 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Vargas, R. et al. In-host population dynamics of Mycobacterium tuberculosis complex during active disease. eLife 10, e61805 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu, Q. et al. Mycobacterium tuberculosis clinical isolates carry mutational signatures of host immune environments. Sci. Adv. 6, eaba4901 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Smith, T. M. et al. Rapid adaptation of a complex trait during experimental evolution of Mycobacterium tuberculosis. eLife 11, e78454 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lieberman, T. D. et al. Genomic diversity in autopsy samples reveals within-host dissemination of HIV-associated Mycobacterium tuberculosis. Nat. Med. 22, 1470–1474 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu, Q. et al. Within patient microevolution of Mycobacterium tuberculosis correlates with heterogeneous responses to treatment. Sci. Rep. 5, 17507 (2015).


    Google Scholar
     

  • Moreno-Molina, M. et al. Genomic analyses of Mycobacterium tuberculosis from human lung resections reveal a high frequency of polyclonal infections. Nat. Commun. 12, 2716 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Martin, C. J. et al. Digitally barcoding Mycobacterium tuberculosis reveals in vivo infection dynamics in the macaque model of tuberculosis. mBio 8, e00312–e00317 (2017).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Levin, B. R. & Bull, J. J. Short-sighted evolution and the virulence of pathogenic microorganisms. Trends Microbiol. 2, 76–81 (1994).

    CAS 
    PubMed 

    Google Scholar
     

  • Cadena, A. M. et al. Concurrent infection with Mycobacterium tuberculosis confers robust protection against secondary infection in macaques. PLoS Pathog. 14, e1007305 (2018).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nemeth, J. et al. Contained Mycobacterium tuberculosis infection induces concomitant and heterologous protection. PLoS Pathog. 16, e1008655 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ganchua, S. K. et al. Antibiotic treatment modestly reduces protection against Mycobacterium tuberculosis reinfection in macaques. Infect. Immun. 92, e0053523 (2024).

    PubMed 

    Google Scholar
     

  • Andrews, J. R. et al. Risk of progression to active tuberculosis following reinfection with Mycobacterium tuberculosis. Clin. Infect. Dis. 54, 784–791 (2012).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Guerra-Assunção, J. A. et al. Recurrence due to relapse or reinfection with Mycobacterium tuberculosis: a whole-genome sequencing approach in a large, population-based cohort with a high HIV infection prevalence and active follow-up. J. Infect. Dis. 211, 1154–1163 (2015).

    PubMed 

    Google Scholar
     

  • Cancino-Muñoz, I. et al. Cryptic resistance mutations associated with misdiagnoses of multidrug-resistant tuberculosis. J. Infect. Dis. 220, 316–320 (2019).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Abascal, E. et al. In-depth analysis of a mixed Mycobacterium tuberculosis infection involving a multidrug-resistant strain and a susceptible strain. Clin. Microbiol. Infect. 27, 641–643 (2021).

    CAS 
    PubMed 

    Google Scholar
     

  • van Rie, A. et al. Reinfection and mixed infection cause changing Mycobacterium tuberculosis drug-resistance patterns. Am. J. Respir. Crit. Care Med. 172, 636–642 (2005).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zetola, N. M. et al. Mixed Mycobacterium tuberculosis complex infections and false-negative results for rifampin resistance by GeneXpert MTB/RIF are associated with poor clinical outcomes. J. Clin. Microbiol. 52, 2422–2429 (2014).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shin, S. S. et al. Mixed Mycobacterium tuberculosis-strain infections are associated with poor treatment outcomes among patients with newly diagnosed tuberculosis, independent of pretreatment heteroresistance. J. Infect. Dis. 218, 1974–1982 (2018).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cohen, T. et al. Within-host heterogeneity of Mycobacterium tuberculosis infection is associated with poor early treatment response: a prospective cohort study. J. Infect. Dis. 213, 1796–1799 (2016).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen, Y. et al. Whole-genome sequencing exhibits better diagnostic performance than variable-number tandem repeats for identifying mixed infections of Mycobacterium tuberculosis. Microbiol. Spectr. 11, e0357022 (2023).

    PubMed 

    Google Scholar
     

  • Asare-Baah, M., Séraphin, M. N., Salmon, L. A. T. & Lauzardo, M. Effect of mixed strain infections on clinical and epidemiological features of tuberculosis in Florida. Infect. Genet. Evol. 87, 104659 (2021).

    CAS 
    PubMed 

    Google Scholar
     

  • Pandey, P. et al. Mycobacterium tuberculosis polyclonal infections through treatment and recurrence. PLoS ONE 15, e0237345 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Crowder, R. et al. Impact of heteroresistance on treatment outcomes of people with drug-resistant TB. IJTLD Open 10, 466–472 (2024).


    Google Scholar
     

  • McIvor, A., Koornhof, H. & Kana, B. D. Relapse, re-infection and mixed infections in tuberculosis disease. Pathog. Dis. 75, ftx020 (2017).


    Google Scholar
     

  • Séraphin, M. N. et al. Direct transmission of within-host Mycobacterium tuberculosis diversity to secondary cases can lead to variable between-host heterogeneity without de novo mutation: a genomic investigation. EBioMedicine 47, 293–300 (2019).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Walter, K. S. et al. Signatures of transmission in within-host Mycobacterium tuberculosis complex variation: a retrospective genomic epidemiology study. Lancet Microbe 6, 100936 (2024).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Martin, M. A., Lee, R. S., Cowley, L. A., Gardy, J. L. & Hanage, W. P. Within-host Mycobacterium tuberculosis diversity and its utility for inferences of transmission. Microb. Genom. 4, e000217 (2018).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lee, R. S., Proulx, J.-F., McIntosh, F., Behr, M. A. & Hanage, W. P. Previously undetected super-spreading of Mycobacterium tuberculosis revealed by deep sequencing. eLife 9, e53245 (2020).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gabbassov, E., Moreno-Molina, M., Comas, I., Libbrecht, M. & Chindelevitch, L. SplitStrains, a tool to identify and separate mixed Mycobacterium tuberculosis infections from WGS data. Microb. Genom. 7, 000607 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Votintseva, A. A. et al. Same-day diagnostic and surveillance data for tuberculosis via whole-genome sequencing of direct respiratory samples. J. Clin. Microbiol. 55, 1285–1298 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Goig, G. A. et al. Whole-genome sequencing of Mycobacterium tuberculosis directly from clinical samples for high-resolution genomic epidemiology and drug resistance surveillance: an observational study. Lancet Microbe 1, e175–e183 (2020).

    CAS 
    PubMed 

    Google Scholar
     

  • Doyle, R. M. et al. Direct whole-genome sequencing of sputum accurately identifies drug-resistant Mycobacterium tuberculosis faster than MGIT culture sequencing. J. Clin. Microbiol. 56, e00666–e00718 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shockey, A. C., Dabney, J. & Pepperell, C. S. Effects of host, sample, and in vitro culture on genomic diversity of pathogenic mycobacteria. Front. Genet. 10, 460462 (2019).


    Google Scholar
     

  • Mariner-Llicer, C. et al. Genetic diversity within diagnostic sputum samples is mirrored in the culture of Mycobacterium tuberculosis across different settings. Nat. Commun. 15, 7114 (2024).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Genestet, C. et al. Subcultured Mycobacterium tuberculosis isolates on different growth media are fully representative of bacteria within clinical samples. Tuberculosis 116, 61–66 (2019).

    PubMed 

    Google Scholar
     

  • Yang, Z. et al. Pangenome graphs in infectious disease: a comprehensive genetic variation analysis of Neisseria meningitidis leveraging Oxford Nanopore long reads. Front. Genet. 14, 1225248 (2023).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mahairas, G. G., Sabo, P. J., Hickey, M. J., Singh, D. C. & Stover, C. K. Molecular analysis of genetic differences between Mycobacterium bovis BCG and virulent M. bovis. J. Bacteriol. 178, 1274–1282 (1996).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Brosch, R. et al. Comparative genomics uncovers large tandem chromosomal duplications in Mycobacterium bovis BCG Pasteur. Yeast 17, 111–123 (2000).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Domenech, P., Kolly, G. S., Leon-Solis, L., Fallow, A. & Reed, M. B. Massive gene duplication event among clinical isolates of the Mycobacterium tuberculosis W/Beijing family. J. Bacteriol. 192, 4562–4570 (2010).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shitikov, E. A. et al. Unusual large-scale chromosomal rearrangements in Mycobacterium tuberculosis Beijing B0/W148 cluster isolates. PLoS ONE 9, e84971 (2014).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Karboul, A. et al. Insights into the evolutionary history of tubercle bacilli as disclosed by genetic rearrangements within a PE_PGRS duplicated gene pair. BMC Evol. Biol. 6, 107 (2006).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Merker, M., Kohl, T. A., Niemann, S. & Supply, P. The evolution of strain typing in the Mycobacterium tuberculosis complex. Adv. Exp. Med. Biol. 1019, 43–78 (2017).

    CAS 
    PubMed 

    Google Scholar
     

  • Bespiatykh, D., Bespyatykh, J., Mokrousov, I. & Shitikov, E. A comprehensive map of Mycobacterium tuberculosis complex regions of difference. mSphere 6, e0053521 (2021).

    CAS 
    PubMed 

    Google Scholar
     

  • Soto, C. Y. et al. IS6110 mediates increased transcription of the phoP virulence gene in a multidrug-resistant clinical isolate responsible for tuberculosis outbreaks. J. Clin. Microbiol. 42, 212–219 (2004).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Behruznia, M. et al. The Mycobacterium tuberculosis complex pangenome is small and driven by sub-lineage-specific regions of difference. eLife https://doi.org/10.1101/2024.03.12.584580 (2024)

  • Stritt, C. et al. Large contribution of repeats to genetic variation in a transmission cluster of Mycobacterium tuberculosis. Preprint at bioRxiv https://doi.org/10.1101/2024.03.08.584093 (2024).

  • Wang, L. et al. Multiple genetic paths including massive gene amplification allow to overcome loss of ESX-3 secretion system substrates. Proc. Natl Acad. Sci. USA 119, e2112608119 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bolotin, E. & Hershberg, R. Gene loss dominates as a source of genetic variation within clonal pathogenic bacterial species. Genome Biol. Evol. 7, 2173–2187 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Abrahams, J. S. et al. Towards comprehensive understanding of bacterial genetic diversity: large-scale amplifications in Bordetella pertussis and Mycobacterium tuberculosis. Microb. Genom. 8, 000761 (2022).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Youngblom, M. A., Smith, T. M., Murray, H. J. & Pepperell, C. S. Adaptation of the Mycobacterium tuberculosis transcriptome to biofilm growth. PLoS Pathog. 20, e1012124 (2024).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Reams, A. B. & Roth, J. R. Mechanisms of gene duplication and amplification. Cold Spring Harb. Perspect. Biol. 7, a016592 (2015).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Weiner, B. et al. Independent large scale duplications in multiple M. tuberculosis lineages overlapping the same genomic region. PLoS ONE 7, e26038 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kaufmann, S. H. E. Vaccine development against tuberculosis before and after COVID-19. Front. Immunol. 14, 1273938 (2023).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Eldholm, V., Rønning, J. O., Mengshoel, A. T. & Arnesen, T. Import and transmission of Mycobacterium orygis and Mycobacterium africanum, Norway. BMC Infect. Dis. 21, 562 (2021).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bifani, P. J. et al. Origin and interstate spread of a New York City multidrug-resistant Mycobacterium tuberculosis clone family. JAMA 275, 452–457 (1996).

    CAS 
    PubMed 

    Google Scholar
     

  • Namouchi, A., Didelot, X., Schöck, U., Gicquel, B. & Rocha, E. P. C. After the bottleneck: genome-wide diversification of the Mycobacterium tuberculosis complex by mutation, recombination, and natural selection. Genome Res. 22, 721–734 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pepperell, C. S. et al. The role of selection in shaping diversity of natural M. tuberculosis populations. PLoS Pathog. 9, e1003543 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Johri, P. et al. Recommendations for improving statistical inference in population genomics. PLoS Biol. 20, e3001669 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rahman, S., Kosakovsky Pond, S. L., Webb, A. & Hey, J. Weak selection on synonymous codons substantially inflates dN/dS estimates in bacteria. Proc. Natl Acad. Sci. USA 118, e2023575118 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Morales-Arce, A. Y., Harris, R. B., Stone, A. C. & Jensen, J. D. Evaluating the contributions of purifying selection and progeny-skew in dictating within-host Mycobacterium tuberculosis evolution. Evolution 74, 992–1001 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Walker, T. M. et al. Whole-genome sequencing to delineate Mycobacterium tuberculosis outbreaks: a retrospective observational study. Lancet Infect. Dis. 13, 137–146 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Menardo, F. Understanding drivers of phylogenetic clustering and terminal branch lengths distribution in epidemics of Mycobacterium tuberculosis. eLife 11, e76780 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Stimson, J. et al. Beyond the SNP threshold: identifying outbreak clusters using inferred transmissions. Mol. Biol. Evol. 36, 587–603 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • du Plessis, L. & Stadler, T. Getting to the root of epidemic spread with phylodynamic analysis of genomic data. Trends Microbiol. 23, 383–386 (2015).

    PubMed 

    Google Scholar
     

  • Stadler, T. Sampling-through-time in birth–death trees. J. Theor. Biol. 267, 396–404 (2010).

    PubMed 

    Google Scholar
     

  • Blount, Z. D., Lenski, R. E. & Losos, J. B. Contingency and determinism in evolution: replaying life’s tape. Science 362, eaam5979 (2018).

    PubMed 

    Google Scholar
     

  • Green, A. G. et al. Analysis of genome-wide mutational dependence in naturally evolving Mycobacterium tuberculosis populations. Mol. Biol. Evol. 40, msad131 (2023).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Brunner, V. M. & Fowler, P. W. Compensatory mutations are associated with increased in vitro growth in resistant clinical samples of Mycobacterium tuberculosis. Microb. Genom. 10, 001187 (2024).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Manson, A. L. et al. Genomic analysis of globally diverse Mycobacterium tuberculosis strains provides insights into the emergence and spread of multidrug resistance. Nat. Genet. 49, 395–402 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ektefaie, Y., Dixit, A., Freschi, L. & Farhat, M. R. Globally diverse Mycobacterium tuberculosis resistance acquisition: a retrospective geographical and temporal analysis of whole genome sequences. Lancet Microbe 2, e96–e104 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • World Health Organization. Catalogue of mutations in Mycobacterium tuberculosis complex and their association with drug resistance, second edition (WHO, 2023).

  • World Health Organization. Consolidated guidelines on tuberculosis: module 4: treatment: drug-susceptible tuberculosis treatment (WHO, 2022).

  • Goig, G. A. et al. Transmission as a key driver of resistance to the new tuberculosis drugs. N. Engl. J. Med. 392, 97–99 (2025).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Source link

    Get RawNews Daily

    Stay informed with our RawNews daily newsletter email

    Ecology, global diversity and evolutionary mechanisms in the Mycobacterium tuberculosis complex

    Astros To Select Brendan Rodgers

    Sweet Sixteen: Duke vs. Arizona Odds, Expert Picks, and Best Bets – Basketball Insiders

    Sauce Walka Shooting Video Shows Gunmen Running Up to Kill Rapper Sayso P