Stock Ticker
Stock Ticker

Acute LPS exposure enhances susceptibility to peripheral prion infection

  • Legname, G. et al. Synthetic mammalian prions. Science 305, 673–676. https://doi.org/10.1126/science.1100195 (2004).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang, F., Wang, X., Yuan, C. G. & Ma, J. Generating a prion with bacterially expressed Recombinant prion protein. Science 327, 1132–1135. https://doi.org/10.1126/science.1183748 (2010).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Mabbott, N. How do PrPSc prions spread between and within host species, and within hosts? Pathogens. https://doi.org/10.3390/pathogens6040060 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sigurdson, C. J. et al. Oral transmission and early lymphoid tropism of chronic wasting disease PrPres in mule deer fawns (Odocoileus hemionus). J. Gen. Virol. 80, 2757–2764. https://doi.org/10.1099/0022-1317-80-10-2757 (1999).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Brown, K. L. et al. Scrapie replication in lymphoid tissues depends on PrP-expressing follicular dendritic cells. Nat. Med. 5, 1308–1312. https://doi.org/10.1038/15264 (1999).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Andreoletti, O. et al. Early accumulation of PrPSc in gut-associated lymphoid and nervous tissues of susceptible sheep from a Romanov flock with natural scrapie. J. Gen. Virol. 81, 3115–3126. https://doi.org/10.1099/0022-1317-81-12-3115 (2000).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Heggebø, R. et al. Distribution of prion protein in the ileal Peyer’s patch of scrapie-free lambs and lambs naturally and experimentally exposed to the scrapie agent. J. Gen. Virol. 81, 2327–2337. https://doi.org/10.1099/0022-1317-81-9-2327 (2000).

    Article 
    PubMed 
    MATH 

    Google Scholar
     

  • van Keulen, L. J. M., Schreuder, B. E. G., Vromans, M. E. W., Langeveld, J. P. M. & Smits, M. A. Scrapie-associated prion protein in the gastro-intestinal tract of sheep with scrapie. J. Comp. Pathol. 121, 55–63. https://doi.org/10.1053/jcpa.1998.0300 (1999).

    Article 
    PubMed 

    Google Scholar
     

  • Fraser, H. & Dickinson, A. G. Pathogenesis of scrapie in the mouse: the role of the spleen. Nature 226, 462–463. https://doi.org/10.1038/226462a0 (1970).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Fraser, H. & Dickinson, A. G. Studies on the lymphoreticular system in the pathogenesis of Scrapie: the role of spleen and thymus. J. Comp. Pathol. 88, 563–573. https://doi.org/10.1016/0021-9975(78)90010-5 (1978).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Montrasio, F. et al. Impaired prion replication in spleens of mice lacking functional follicular dendritic cells. Science 288, 1257–1259. https://doi.org/10.1126/science.288.5469.1257 (2000).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Glaysher, B. R. & Mabbott, N. A. Role of the GALT in scrapie agent neuroinvasion from the intestine. J. Immunol. 178, 3757–3766. https://doi.org/10.4049/jimmunol.178.6.3757 (2007).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Glaysher, B. R. & Mabbott, N. A. Role of the draining lymph node in scrapie agent transmission from the skin. Immunol. Lett. 109, 64–71. https://doi.org/10.1016/j.imlet.2007.01.003 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Donaldson, D. S., Else, K. J. & Mabbott, N. A. The gut-associated lymphoid tissues in the small intestine, not the large intestine, play a major role in oral prion disease pathogenesis. J. Virol. 15, 9532–9547. https://doi.org/10.1128/JVI.01544-15 (2015).

    Article 

    Google Scholar
     

  • McCulloch, L. et al. Follicular dendritic cell-specific prion protein (PrPC) expression alone is sufficient to sustain prion infection in the spleen. PLoS Pathog. 7, e1002402. https://doi.org/10.1371/journal.ppat.1002402 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Mabbott, N. A., Bradford, B. M., Pal, R., Young, R. & donaldson, D. S. The effects of immune system modulation on prion disease susceptibility and pathogenesis. Int. J. Mol. Sci. 21, 7299. https://doi.org/10.3390/ijms21197299 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Donaldson, D. S. et al. M cell depletion blocks oral prion disease pathogenesis. Mucosal Immunol. 5, 216–225. https://doi.org/10.1038/mi.2011.68 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Donaldson, D. S., Sehgal, A., Rios, D., Williams, I. R. & Mabbott, N. A. Increased abundance of M cells in the gut epithelium dramatically enhances oral prion disease susceptibility. PLoS Pathog. 12, e1006075. https://doi.org/10.1371/journal.ppat.1006075 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kobayashi, A. et al. The functional maturation of M cells is dramatically reduced in the Peyer’s patches of aged mice. Mucosal Immunol. 6, 1027–1037. https://doi.org/10.1038/mi.2012.141 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Brown, K. L., Wathne, G. J., Sales, J., Bruce, M. E. & Mabbott, N. A. The effects of host age on follicular dendritic cell status dramatically impair scrapie agent neuroinvasion in aged mice. J. Immunol. 183, 5199–5207. https://doi.org/10.4049/jimmunol.0802695 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chapman, H. A., Vavrin, Z. & Hibbs, J. B. Coordinate expression of macrophage procoagulant and fibrinolytic activity in vitro and in vivo. J. Immunol. 130, 261–266. https://doi.org/10.4049/jimmunol.130.1.261 (1983).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Barth, M. W., Hendrzak, J. A., Melnicoff, M. J. & Morahan, P. S. Review of the macrophage dissapearance reaction. J. Leukoc. Biol. 57, 361–367. https://doi.org/10.1002/jlb.57.3.361 (1995).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Vega-Perez, A. et al. Resident macrophage-dependent immune cell scaffolds drive anti-bacterial defense in the peritoneal cavity. Immunity 54, 2578–2594. https://doi.org/10.1016/j.immuni.2021.10.007 (2021).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Carp, R. I. & Callahan, S. M. In vitro interaction of scrapie agent and mouse peritoneal macrophages. Intervirology 16, 8–13. https://doi.org/10.1159/000149241 (1981).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Carp, R. I. & Callahan, S. M. Effect of mouse peritoneal macrophages on scrapie infectivity during extended in vitro incubation. Intervirology 17, 201–207. https://doi.org/10.1159/000149289 (1982).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Maignien, T. et al. Role of gut macrophages in mice orally contaminated with scrapie or BSE. Int. J. Pharm. 298, 293–304. https://doi.org/10.1016/j.ijpharm.2005.02.042 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wathne, G. J. & Mabbott, N. A. The diverse roles of mononuclear phagocytes in prion disease pathogenesis. Prion 6, 124–133. https://doi.org/10.4161/pri.18853 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sassa, Y., Yamasaki, S., Horiuchi, M., Inoshima, Y. & Ishiguro, N. The effects of lysosomal and proteasomal inhibitors on abnormal forms of prion protein degradation. Microbiol. Immunol. 54, 763–768. https://doi.org/10.1111/j.1348-0421.2010.00272.x (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Fraser, H. & Dickinson, A. G. Targeting of scrapie lesions and spread of agent via the retino-tectal projection. Brain Res. 346, 31–41. https://doi.org/10.1016/0006-8993(85)91091-1 (1985).

    Article 
    MATH 

    Google Scholar
     

  • Farquhar, C. F. & Dickinson, A. G. Prolongation of scrapie incubation period by an injection of dextran sulphate 500 within the month before or after infection. J. Gen. Virol. 67, 463–473. https://doi.org/10.1099/0022-1317-67-3-463 (1986).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Moore, R. C. et al. Mice with gene targetted prion protein alterations show that Prnp, Sinc and Prni are congruent. Nat. Genet. 18, 118–125. https://doi.org/10.1038/ng0298-118 (1998).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Pal, R., Bradford, B. M. & Mabbott, N. A. Innate immune tolerance in microglia does not impact on central nervous system prion disease. Front. Cell. Neurosci. 16, 918883. https://doi.org/10.3389/fncel.2022.91888 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fraser, H. & Dickinson, A. G. Scrapie in mice. Agent-strain differences in the distribution and intensity of grey matter vacuolation. J. Comp. Pathol. 83, 29–40. https://doi.org/10.1016/0021-9975(73)90024-8 (1973).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Kilkenny, C., Browne, W. J., Cuthill, I. C., Emerson, M. & Altman, D. G. Improving bioscience research reporting: the ARRIVE guidelines for reporting animal research. PLoS Biol. 8, e1000412. https://doi.org/10.1371/journal.pbio.1000412 (2010).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • McCutcheon, S. et al. Prion protein-specific antibodies that detect multiple TSE agents with high sensitivity. PLoS One. 9, e91143. https://doi.org/10.1371/journal.pone.0091143 (2014).

    Article 
    ADS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Farquhar, C. F., Somerville, R. A. & Ritchie, L. A. Post-mortem immunodiagnosis of scrapie and bovine spongiform encephalopathy. J. Virol. Methods. 24, 215–222. https://doi.org/10.1016/0166-0934(89)90023-2 (1989).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Schulz-Schaeffer, W. J. et al. The paraffin-embedded tissue blot detects PrPsc early in the incubation time in prion diseases. Am. J. Pathol. 156, 51–56. https://doi.org/10.1016/S0002-9440(10)64705-0 (2000).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Thomas, C. M. et al. Development of a sensitive real-time quaking-induced conversion (RT-QuIC) assay for application in prion-infected blood. PLoS One. 18, e0293845. https://doi.org/10.1371/journal.pone.0293845 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Louwe, P. A. et al. Recruited macrophages that colonize the postinflammatory peritoneal niche convert into functionally divergent resident cells. Nat. Commun. 12, 1770. https://doi.org/10.1038/s41467-021-21778-0 (2021).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Mabbott, N. A., Mackay, F., Minns, F. & Bruce, M. E. Temporary inactivation of follicular dendritic cells delays neuroinvasion of scrapie. Nat. Med. 6, 719–720. https://doi.org/10.1038/77401 (2000).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bain, C. C. et al. Long-lived self-renewing bone marrow-derived macrophages displace embryo-derived cells to inhabit adult serous cavities. Nat. Commun. 7, 11852. https://doi.org/10.1038/ncomms11852 (2016).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Bain, C. C. et al. CD11c identifies microbiota and EGR2-dependent MHCII + serous cavity macrophages with sexually dimorphic fate in mice. Eur. J. Immunol. 52, 1243–1257. https://doi.org/10.1002/eji.202149756 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liao, C. T. et al. IL-10 differentially controls the infiltration of inflammatory macrophages and antigen-presenting cells during inflammation. Eur. J. Immunol. 46, 2222–2232. https://doi.org/10.1002/eji.201646528 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • McCulloch, L., Brown, K. L. & Mabbott, N. A. Ablation of the cellular prion protein, PrPC, specifcally on follicular dendritic cells has no effect on their maturation or function. Immunology 138, 246–257. https://doi.org/10.1111/imm.12031 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mabbott, N. A., Young, J., McConnell, I. & Bruce, M. E. Follicular dendritic cell dedifferentiation by treatment with an inhibitor of the lymphotoxin pathway dramatically reduces scrapie susceptibility. J. Virol. 77, 6845–6854. https://doi.org/10.1128/JVI.77.12.6845-6854.2003 (2003).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bremer, J. et al. Repetitive immunization enhances the susceptibility of mice to peripherally administered prions. PLoS One. 4, e7160. https://doi.org/10.1371/journal.pone.0007160 (2009).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Montrasio, F. et al. B-lymphocyte-restricted expression of the prion protein does not enable prion replication in PrP knockout mice. Procedings Natl. Acad. Sci. USA. 98, 4034–4037. https://doi.org/10.1073/pnas.051609398 (2001).

    ADS 
    CAS 
    MATH 

    Google Scholar
     

  • Raeber, A. J. et al. Ectopic expression of prion protein (PrP) in T lymphocytes or hepatocytes of PrP knockout mice is insufficient to sustain prion replication. Proc. Natl. Acad. Sci. USA 96, 3987–3992. https://doi.org/10.1073/pnas.96.7.3987 (1999).

  • Gilch, S. et al. CpG and LPS can interfere negatively with prion clearance in macrophage and microglial cells. FEBS J. 274, 5834–5844. https://doi.org/10.1111/j.1742-4658.2007.06105.x (2007).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Saleem, F. et al. Lipopolysaccharide induced conversion of Recombinant prion protein. Prion 8, 221–223. https://doi.org/10.4161/pri.28939 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Michel, B. et al. Incunabular immunological events in prion trafficking. Sci. Rep. 2, 440. https://doi.org/10.1038/srep00440 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Beringue, V. et al. Role of spleen macrophages in the clearance of scrapie agent early in pathogenesis. J. Pathol. 190, 495–502. https://doi.org/10.1002/(SICI)1096-9896(200003)190:4<495::AID-PATH535>3.0.CO;2-T. (2000).

  • Davies, L. C. et al. Distinct bone marrow-derived and tissue-resident macrophage lineages proliferate at key stages during inflammation. Nat. Commun. 4, 1886. https://doi.org/10.1038/ncomms2877 (2013).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Davies, L. C. et al. A quantifiable proliferative burst of tissue macrophages restores homeostatic macrophage populations after acute inflammation. Eur. J. Immunol. 41, 2155–2164. https://doi.org/10.1002/eji.201141817 (2011).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Liddelow, S. A. et al. Neurotoxic reactive astrocytes are induced by activated microglia. Nature 541, 481–487. https://doi.org/10.1038/nature21029 (2017).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wendeln, A. C. et al. Innate immune memory in the brain shapes neurological disease hallmarks. Nature 556, 332–338. https://doi.org/10.1038/s41586-018-0023-4 (2018).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mildenberger, W., Stifter, S. A. & Greter, M. Diversity and function of brain-associated macrophages. Curr. Op Immunol. 76, 102181. https://doi.org/10.1016/j.coi.2022.102181 (2022).

    Article 
    CAS 
    MATH 

    Google Scholar
     

  • Source link

    Get RawNews Daily

    Stay informed with our RawNews daily newsletter email

    Acute LPS exposure enhances susceptibility to peripheral prion infection

    Thairo Estrada To Miss Four To Eight Weeks With Broken Wrist

    How To Watch March Madness 2025 With Free Live Stream

    New York poised to place Harriet Tubman in US Capitol