Smartphone conjunctiva photography for malaria risk stratification in asymptomatic school age children

  • Okumu, F. et al. What Africa can do to accelerate and sustain progress against malaria. PLoS Glob. Public Health 2, e0000262 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sarpong, E. et al. Zero malaria: A mirage or reality for populations of sub-Saharan Africa in health transition. Malar. J. 21, 314 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li, J., Docile, H. J., Fisher, D., Pronyuk, K. & Zhao, L. Current status of malaria control and elimination in Africa: Epidemiology, diagnosis, treatment, progress and challenges. J. Epidemiol. Glob. Health 14, 1–19 (2024).

    Article 

    Google Scholar
     

  • World Health Organization. Global Technical Strategy for Malaria 2016–2030. (World Health Organization, 2015).

  • González-Sanz, M., Berzosa, P. & Norman, F. F. Updates on malaria epidemiology and prevention strategies. Curr. Infect. Dis. Rep. 25, 131–139 (2023).

    Article 

    Google Scholar
     

  • Venkatesan, P. The 2023 WHO World Malaria Report. Lancet Microbe 5, e214 (2024).

    Article 
    PubMed 

    Google Scholar
     

  • Rajneesh, T. et al. Advancements and challenges in developing malaria vaccines: Targeting multiple stages of the parasite life cycle. ACS Infect. Dis. 9, 1795–1814 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lancet. Malaria vaccines: a test for global health. Lancet 403, 10426,503 (2024).


    Google Scholar
     

  • Dereje, N. et al. A community engagement framework to accelerate the uptake of malaria vaccines in Africa. Nat. Med. 30, 1–2 (2024).

    Article 

    Google Scholar
     

  • Walldorf, J. A. et al. School-age children are a reservoir of malaria infection in Malawi. PLoS One 10, e0134061 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Phillips, M. A. et al. Malaria. Nat. Rev. Dis. Prim. 3, 17050 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Landier, J., Rebaudet, S., Piarroux, R. & Gaudart, J. Spatiotemporal analysis of malaria for new sustainable control strategies. BMC Med. 16, 226 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Moxon, C. A., Gibbins, M. P., McGuinness, D., Milner, D. A. Jr & Marti, M. New insights into malaria pathogenesis. Annu. Rev. Pathol. 15, 315–343 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cohee, L. M. et al. Preventive malaria treatment among school-aged children in sub-Saharan Africa: A systematic review and meta-analyses. Lancet Glob. Health 8, e1499–e1511 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Daily, J. P., Minuti, A. & Khan, N. Diagnosis, treatment, and prevention of malaria in the US: A review. JAMA 328, 460–471 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Poespoprodjo, J. R., Douglas, N. M., Ansong, D., Kho, S. & Anstey, N. M. Malaria. Lancet 402, 2328–2345 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Samarasekera, U. Climate change and malaria: Predictions becoming reality. Lancet 402, 361–362 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Staedke, S. G. & Maiteki-Sebuguzi, C. Targeting malaria control to schoolchildren. Lancet Glob. Health 11, e1156–e1157 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Markwalter, C. F. et al. Plasmodium falciparum infection in humans and mosquitoes influences natural anopheline biting behavior and transmission. Nat. Commun. 15, 4626 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • World Health Organization. WHO Guidelines for Malaria 2024. https://www.who.int/publications/i/item/9789240086173 (2024).

  • Wu, L. et al. Comparison of diagnostics for the detection of asymptomatic Plasmodium falciparum infections to inform control and elimination strategies. Nature 528, S86–S93 (2015).

    Article 
    PubMed 

    Google Scholar
     

  • Oyegoke, O. O. et al. Malaria diagnostic methods with the elimination goal in view. Parasitol. Res. 121, 1867–1885 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Newby, G. et al. Testing and treatment for malaria elimination: A systematic review. Malar. J. 22, 254 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang, H., Fink, G. & Cohen, J. Malaria rapid tests, febrile illness management, and child mortality across sub-Saharan African countries. JAMA 332, 1270–1281 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cunningham, J. et al. A review of the WHO malaria rapid diagnostic test product testing programme (2008–2018): Performance, procurement and policy. Malar. J. 18, 1–15 (2019).

    Article 

    Google Scholar
     

  • Kavanaugh, M. J., Azzam, S. E. & Rockabrand, D. M. Malaria rapid diagnostic tests: Literary review and recommendation for a quality assurance, quality control algorithm. Diagnostics 11, 50768 (2021).

    Article 

    Google Scholar
     

  • Aidoo, M. & Incardona, S. Ten years of universal testing: How the rapid diagnostic test became a game changer for malaria case management and improved disease reporting. Am. J. Tropical Med. Hyg. 106, 29–32 (2021).

    Article 

    Google Scholar
     

  • Wittenauer, R., Nowak, S. & Luter, N. Price, quality, and market dynamics of malaria rapid diagnostic tests: Analysis of Global Fund 2009–2018 data. Malar. J. 21, 12 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Boyce, M. R. & O’Meara, W. P. Use of malaria RDTs in various health contexts across sub-Saharan Africa: A systematic review. BMC Public Health 17, 470 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • World Health Organization. Rapid diagnostic tests for malaria. https://www.who.int/teams/global-malaria-programme/case-management/diagnosis/rapid-diagnostic-tests (2024).

  • Conner, R. et al. Mass testing and treatment for malaria followed by weekly fever screening, testing and treatment in northern Senegal: Feasibility, cost and impact. Malar. J. 19, 367 (2020).


    Google Scholar
     

  • Dalrymple, U. et al. Quantifying the contribution of Plasmodium falciparum malaria to febrile illness amongst African children. eLife 6, e29198 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Thwing, J. et al. Assessment of the utility of a symptom-based algorithm for identifying febrile patients for malaria diagnostic testing in Senegal. Malar. J. 16, 1–11 (2017).

    Article 

    Google Scholar
     

  • Nankabirwa, J. et al. Malaria in school-age children in Africa: An increasingly important challenge. Tropical Med. Int. Health 19, 1294–1309 (2014).

    Article 

    Google Scholar
     

  • Pinchoff, J. et al. Southern Africa International Centers of Excellence for Malaria, R. Individual and household level risk factors associated with malaria in Nchelenge District, a region with perennial transmission: A serial cross-sectional study from 2012 to 2015. PLoS One 11, e0156717 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mwandagalirwa, M. K. et al. Individual and household characteristics of persons with Plasmodium falciparum malaria in sites with varying endemicities in Kinshasa Province, Democratic Republic of the Congo. Malar. J. 16, 456 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cohee, L. M. et al. School-based screening and treatment may reduce P. falciparum transmission. Sci. Rep. 11, 6905 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cohee, L. M., Nankabirwa, J. I., Greenwood, B., Djimde, A. & Mathanga, D. P. Time for malaria control in school-age children. Lancet Child Adolesc. Health 5, 537–538 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Makenga, G. et al. Prevalence of malaria parasitaemia in school-aged children and pregnant women in endemic settings of sub-Saharan Africa: A systematic review and meta-analysis. Parasite Epidemiol. Control 11, e00188 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen, I. et al. Asymptomatic” malaria: A chronic and debilitating infection that should be treated. PLoS Med. 13, e1001942 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sifft, K. C. et al. Asymptomatic only at first sight: Malaria infection among schoolchildren in highland Rwanda. Malar. J. 15, 1–10 (2016).

    Article 

    Google Scholar
     

  • Clarke, S. E. et al. Impact of a malaria intervention package in schools on Plasmodium infection, anaemia and cognitive function in schoolchildren in Mali: A pragmatic cluster-randomised trial. BMJ Glob. Health 2, e000182 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Andolina, C. et al. Sources of persistent malaria transmission in a setting with effective malaria control in eastern Uganda: A longitudinal, observational cohort study. Lancet Infect. Dis. 21, 1568–1578 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Joshi, V. et al. Automated detection of malarial retinopathy in digital fundus images for improved diagnosis in Malawian children with clinically defined cerebral malaria. Sci. Rep. 7, 42703 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wilson, K. J. et al. Retinal imaging technologies in cerebral malaria: A systematic review. Malar. J. 22, 139 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Beare, N. A. V. Cerebral malaria – using the retina to study the brain. Eye 37, 2379–2384 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Brodeur, K. R. N., Herculano, A. & Oliveira, K. Clinical aspects of malarial retinopathy: A critical review. Pathog. Glob. Health 117, 450–461 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Kurup, A. R. et al. Automated malarial retinopathy detection using transfer learning and multi-camera retinal images. Biocybern. Biomed. Eng. 43, 109–123 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Lin, Y. et al. Using malarial retinopathy to improve the diagnosis of pediatric cerebral malaria. Am. J. Trop. Med. Hyg. 108, 69 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Joshi, V. S. et al. Comparing the performance of three retinal cameras in detecting malarial retinopathy in pediatric cerebral malaria in Malawi. Invest. Ophthalmol. Vis. Sci. 57, 1717–1717 (2016).


    Google Scholar
     

  • Soliz, P. et al. Comparison of the effectiveness of three retinal camera technologies for malarial retinopathy detection in Malawi. Proc. SPIE – Int. Soc. Opt.Eng. 9693, 96930B (2016).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Van Timmeren, J. E., Cester, D., Tanadini-Lang, S., Alkadhi, H. & Baessler, B. Radiomics in medical imaging – “how-to” guide and critical reflection. Insights into Imaging 11, 91 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Guiot, J. et al. A review in radiomics: Making personalized medicine a reality via routine imaging. Med. Res. Rev. 42, 426–440 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Huang, E. P. et al. Criteria for the translation of radiomics into clinically useful tests. Nat. Rev. Clin. Oncol. 20, 69–82 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • McCague, C. et al. Introduction to radiomics for a clinical audience. Clin. Radiol. 78, 83–98 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zwanenburg, A. et al. The image biomarker standardization initiative: Standardized quantitative radiomics for high-throughput image-based phenotyping. Radiology 295, 328–338 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Poti, K. E., Sullivan, D. J., Dondorp, A. M. & Woodrow, C. J. HRP2: Transforming malaria diagnosis, but with caveats. Trends Parasitol. 36, 112–126 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Digiovanni, S. L., Guaragnella, C., Rizzi, M. & Falagario, M. A digital green filter for smart health early cervical cancer diagnosis. In 2016 IEEE 2nd International Forum on Research and Technologies for Society and Industry Leveraging a Better Tomorrow (RTSI) 1–6 (IEEE).

  • Lim, A. B., Park, J.-H., Jung, J. H., Yoo, C. & Kim, Y. Y. Characteristics of diffuse retinal nerve fiber layer defects in red-free photographs as observed in optical coherence tomography en face images. BMC Ophthalmol. 20, 1–7 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Saraiva, S. et al. Dysplasia surveillance in inflammatory bowel disease: A cohort study. GE – Portuguese J. Gastroenterol. 28, 97–105 (2021).

    Article 

    Google Scholar
     

  • Fraenkel, P. G. Anemia of inflammation: A review. Med. Clin. 101, 285–296 (2017).


    Google Scholar
     

  • Weiss, G., Ganz, T. & Goodnough, L. T. Anemia of inflammation. Blood 133, 40–50 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Crooks, C. J. et al. Anaemia of acute inflammation: A higher acute systemic inflammatory response is associated with a larger decrease in blood haemoglobin levels in patients with COVID-19 infection. Clin. Med. 23, 201–205 (2023).

    Article 

    Google Scholar
     

  • Weckman, A. M. et al. Inflammatory profiles in febrile children with moderate and severe malnutrition presenting at-hospital in Uganda are associated with increased mortality. eBioMedicine 94, 104606 (2023).

    Article 

    Google Scholar
     

  • Barathan, M. From fever to action: Diagnosis, treatment, and prevention of acute undifferentiated febrile illnesses. Pathog. Dis. 82, ftae006 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Alkema, M. et al. Controlled human malaria infections by mosquito bites induce more severe clinical symptoms than asexual blood-stage challenge infections. eBioMedicine 77, 103919 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pasricha, S. R., Rogers, L., Branca, F. & Garcia-Casal, M. N. Measuring hemoglobin concentration to define anemia: WHO guidelines. Lancet 403, 1963–1966 (2024).

    Article 
    PubMed 

    Google Scholar
     

  • Owusu, E. D. A., Campillo, A., Daily, J. & Ding, X. C. Acceptance and perceived value of non-invasive malaria diagnostic tests in malaria-endemic countries. Malar. J. 20, 379 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Johnston, I. G. et al. Precision identification of high-risk phenotypes and progression pathways in severe malaria without requiring longitudinal data. npj Digi. Med. 2, 63 (2019).

    Article 

    Google Scholar
     

  • Burnett, J. L., Carns, J. L. & Richards-Kortum, R. In vivo microscopy of hemozoin: Towards a needle-free diagnostic for malaria. Biomed. Opt. Express 6, 3462–3474 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Burnett, J. L., Carns, J. L. & Richards-Kortum, R. Towards a needle-free diagnosis of malaria: In vivo identification and classification of red and white blood cells containing Hemozoin. Malar. J. 16, 447 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sikulu-Lord, M. T. et al. Rapid and non-invasive detection of malaria parasites using near-infrared spectroscopy and machine learning. PLoS One 19, e0289232 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chaudhury, S. et al. Wearables detect malaria early in a controlled human-infection study. IEEE Trans. Biomed. Eng. 69, 2119–2129 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Wood, C. S. et al. Taking connected mobile-health diagnostics of infectious diseases to the field. Nature 566, 467–474 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Banik, S. et al. Recent trends in smartphone-based detection for biomedical applications: A review. Anal. Bioanal. Chem. 413, 2389–2406 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hunt, B., Ruiz, A. J. & Pogue, B. W. Smartphone-based imaging systems for medical applications: A critical review. J. Biomed. Opt. 26, 040902 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hussain, I. & Bowden, A. K. Smartphone-based optical spectroscopic platforms for biomedical applications: A review. Biomed. Opt. Express 12, 1974–1998 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Steinhubl, S. R., Muse, E. D. & Topol, E. J. The emerging field of mobile health. Sci. Transl. Med. 7, 283rv3–283rv3 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ku, J. P. & Sim, I. Mobile health: Making the leap to research and clinics. npj Digi. Med. 4, 83 (2021).

    Article 

    Google Scholar
     

  • Osei, E., Kuupiel, D., Vezi, P. N. & Mashamba-Thompson, T. P. Mapping evidence of mobile health technologies for disease diagnosis and treatment support by health workers in sub-Saharan Africa: A scoping review. BMC Med. Inform. Decis. Mak. 21, 11 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Aboye, G. T., Vande Walle, M., Simegn, G. L. & Aerts, J.-M. Current evidence on the use of mHealth approaches in sub-Saharan Africa: A scoping review. Health Policy Technol. 12, 100806 (2023).

    Article 

    Google Scholar
     

  • Park, S. M. et al. mHealth spectroscopy of blood hemoglobin with spectral super-resolution. Optica 7, 563–573 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Park, S. M. et al. Remote blood hemoglobin monitoring with hyperspectral color truthing for advancing sickle cell care. Blood 142, 2277 (2023).

    Article 

    Google Scholar
     

  • Ji, Y. et al. mHealth hyperspectral learning for instantaneous spatiospectral imaging of hemodynamics. PNAS Nexus 2, pgad111 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jacquet-Lagrèze, M., Magnin, M., Allaouchiche, B. & Abrard, S. Is handheld video microscopy really the future of microcirculation monitoring? Crit. Care 27, 352 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lin, J. Y. & Fisher, D. E. Melanocyte biology and skin pigmentation. Nature 445, 843–850 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tom, E. et al. Protecting data privacy in the age of AI-enabled ophthalmology. Transl. Vis. Sci. Technol. 9, 36 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nakayama, L. F. et al. Retinal scans and data sharing: The privacy and scientific development equilibrium. Mayo Clin. Proc.: Digital Health 1, 67–74 (2023).


    Google Scholar
     

  • Zekar, L., & Sharman, T. (2023). Plasmodium falciparum Malaria. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing.

  • Kotepui, M., Kotepui, K. U., De Jesus Milanez, G. & Masangkay, F. R. Summary of discordant results between rapid diagnosis tests, microscopy, and polymerase chain reaction for detecting Plasmodium mixed infection: A systematic review and meta-analysis. Sci. Rep. 10, 12765 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Opoku Afriyie, S. et al. Accuracy of diagnosis among clinical malaria patients: Comparing microscopy, RDT, and a highly sensitive quantitative PCR looking at the implications for submicroscopic infections. Malar. J. 22, 76 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Guide, T. S. (2024). Samsung Galaxy S22 vs Google Pixel 6: Which smartphone takes the crown? Available at: https://www.tomsguide.com/face-off/samsung-galaxy-s22-vs-google-pixel-6#section-samsung-galaxy-s22-vs-google-pixel-6-cameras.

  • Viallefont-Robinet, F. et al. Comparison of MTF measurements using edge method: Towards reference data set. Opt. Express 26, 33625–33648 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Visbal Onufrak, M. A., Konger, R. L. & Kim, Y. L. Telecentric suppression of diffuse light in imaging of highly anisotropic scattering media. Opt. Lett. 41, 143–146 (2016).

    Article 
    PubMed 

    Google Scholar
     

  • He, K., Gkioxari, G., Dollár, P. & Girshick, R. Mask R-CNN. In Proceedings of the IEEE International Conference on Computer Vision 2961–2969 (2017).

  • Wu, Y., Kirillov, A., Massa, F., Lo, W.-Y. & Girshick, R. Detectron 2 (2019).

  • Wada, K. Labelme: Image Polygonal Annotation with Python. Zenodo (2021).

  • Lam, E. Y. & Fung, G. S. Automatic white balancing in digital photography. In Single-Sensor Imaging 287–314 (CRC Press, 2018).

  • Delbracio, M., Kelly, D., Brown, M. S. & Milanfar, P. Mobile computational photography: A tour. Annu. Rev. Vis. Sci. 7, 571–604 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Cheng, D., Abdelhamed, A., Price, B., Cohen, S. & Brown, M. S. Two illuminant estimation and user correction preference. Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR) 2016, 469–477 (2016).


    Google Scholar
     

  • Source link

    Get RawNews Daily

    Stay informed with our RawNews daily newsletter email

    Smartphone conjunctiva photography for malaria risk stratification in asymptomatic school age children

    Shanna Moakler Posts Thirst Traps in the Jacuzzi

    West Ham’s Michail Antonio ‘100 percent’ Sure He Will Play Again After Car Crash

    £11,000 in savings? Here’s how investors could use that to target an annual passive income of £12,892 over time!